Age-aware Adaptive Routing for Network-on-Chip Routing with Odd-Even Turn Model
Abstract
This paper presents an age-aware adaptive routing for Odd-Even (OE) turn model. As packets traverse from source to destination node, their paths are defined by a given routing algorithm. For a selected routing algorithm, an efficient arbitration technique is crucial to sharing critical Network-on-Chip resources. Arbitration techniques provide high degree of local fairness from each router point of view. However, there is delay of a packet with a longer path between the source and destination nodes. In order to address this challenge an age-based arbitration technique is hereby proposed for adaptive routing with OE turn model. The age-aware adaptive routing uses an age-based arbitration technique that gives priority to oldest packet. The performance of the developed age-aware adaptive routing was evaluated using different synthetic traffic at different Packet Injection Rates (PIRs). Results were compared with the result obtained on fair arbitration technique for adaptive routing using average latency and throughput as performance metrics. The result indicated that the age-aware adaptive routing has 2.73%, 6.63 %,5.4% and 4.5 % reduction in latency under random, transpose 1 transpose 2 and bit reversal traffic patterns respectively when compared to fair arbitration adaptive routing with OE turn model. For throughput the results indicated that the age-aware adaptive routing with OE turn model has 14.22%, 13%.12% and 19% increase in throughput under random, transpose 1 transpose 2 and bit reversal traffic patterns respectively when compared to fair arbitration adaptive routing with OE turn model .
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.