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Abstract— In this paper, the electrical signals coupled to the fields present in a medium voltage network are analyzed by the random 

Markov approach. This approach with the contribution of the “Yakam Matrix” is studied to establish the quantitative approximations 

of the current I and the voltage V in non-steady state conditions in order to efficiently deduct the error percent between the 

experimental and the simulated results. Also, the aim was to determine the functional constant with infinite duration through multi-

variable stabilization in commandability and controllability process.  The development of the transition and observability matrices of 

the electrical signals behavior to establish the initialization’s system of Dirichlet is presented where the vector  by the hidden Markov 

approach revealed to be almost stable.   The multiparameter analysis in non-steady state conditions is conducted to show the maximum 

probability of the injected signals. The comparison of the experimental results with the simulation is presented with a 4% error 

obtained by using MATLAB.  Since the function current I(t) remains in (0  I  20)A conditions in case of phase disconnection. 

However, the application of the Markov random approach in electrical networks control modeling still require further studies and 

clarifications.    

Keywords- signals, network, voltage, multiparameter, Markov random approach. 

I.  INTRODUCTION  

The daily need of electrical energy of the modern society is 
fulfilled by means of an efficient production of the electricity, 
its transportation, its distribution and its consumption. Let us 
focus on the distribution network which is an utmost part of 
the power system carrying power within the last step [1],  in 
the process of electrical energy transport from production 
plant [6-7], [9-11] to consumers by regulation [8]. It 
conventionally consists of passive electric circuits [9] in which 
the active and reactive power flows from the high to the low 
voltages through the lines or cables. Recent studies show that 
80% of distribution networks experience temporary 
instabilities and are categorized by monthly, weekly even 
every moment [10] [11]. Despite the computerization of the 
electricity grid, the monitoring of signals in the transmission 
lines against unpredictable fluctuations and disturbances 
remains a concern in this field. These instabilities are 
presented as statistical data collected on each fluctuated point 
[5]. In this paper, a statistical method is used, which is based 
on the random approach of Markov chain [1-4], [12], to 
quantify and forecast the instabilities of the distribution 
network system. This approach represents a triplet matrix 
model taking several load variables of the network. However, 
the voltage and the current of the initial current are considered 

as variables. Since the Markov random approach can be one of 
the output routes in the medium voltage network comparing to 
its characteristics. 

II. STATE OF THE ART 

The multiparameter analysis of an electrical signal in a 
medium voltage network is based on the study of the 
transmission lines of energy from a given point A to another 
point B. Since these lines are components of electrical systems 
[8]. In the Figure 1 the alternating current is defined in a 
sinusoidal state. 

 

 
 

Figure 1.  Simplified diagram of the radial network between source and load. 

The aggregation methods encountered in the literature are 
based on analytical and mathematical modeling. We analyze 
how signals; current and voltage can propagate in a line. The 
laws of the propagation of voltages V and currents I are 
derived from the so-called telegraphist equations [14] [15]. In 
order to establish these equations, the unitary line length of the 
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length x between x and x + dx composed of longitudinal 
elements Rdx, Ldx, and transversal elements Cdx and Gdx. 
The voltage and current are respectively V(x,t) and I(x,t) at the 
input, and V(x + dx,t) and  I(x + dx,t) at the output. The 
change of the current and voltage are obtained by applying the 
mesh current method [8]. The figure 2 illustrates a unitary line 
system evolving over time developed in [13]. The quantities 
involved can be assimilated to time signals. Mathematically 
the behavior of this system can be expressed by the integral 
differential equations (1).  

 

 

 

Figure 2.  Infinitesimal mode in . 

The equations connecting the different quantities involved 
consider all the phenomena to describe the entire system [6]. 
Since the system is linear, the equations derived from the laws 
of electricity [19] governing the behavior of a signal is 
illustrated in the equation (1).  

𝑉(𝑥, 𝑡) = 𝑅𝐼(𝑥, 𝑡) + 𝐿
𝑑𝐼(𝑥,𝑡)

𝑑𝑡
+

1

𝑐
∫ 𝐼(𝑥, 𝑡)𝑑𝑡

𝑡

0
       (1)      

This equation generates a system of partial differential 
equations where the tension and the current are studied on the 
elementary length dx. Since the tension is 
V=V(x,t,∂V/∂x,∂V/∂t). The theory of voltage and current 
propagation in the two regimes; anytime and sinusoidal would 
not be competitive to establish the entire controllability and 
commandability for the unpredictable fluctuations in a 
medium voltage network. Equations (2) and (3) developed in 
the theory of propagation of the two regimes [6-7], [16] are 
mathematical models to describe nonlinear behavior with less 
probabilistic approach. The propagation of voltages and 
currents on a medium voltage network is described in the same 

way as telegraphists [20], [17] under the variation of time t 
regime (2). 

{

𝜕2𝑉

𝜕𝑥2  = 𝐿𝐶 
𝜕2𝑉

𝜕𝑡2  + (𝑅𝐶 + 𝐿𝐺)
𝜕𝑉

𝜕𝑡
 +  𝑅𝐺𝑉

𝜕²𝐼

𝜕𝑥²
 = 𝐿𝐶 

𝜕²𝑉

𝜕𝑡²
+ (𝑅𝐿 + 𝐿𝐺) 

𝜕𝐼

𝜕𝑡
+  𝑅𝐺𝐼

            (2)                                              

Contrarily to the previous regime, the sinusoidal includes the 

inductance and the series resistance [22] given by the complex 

linear impedance Z and the capacitor and the parallel 

conductance by a linear admittance Y. 

 

{

𝑑2𝑉

𝑑𝑥2 = 𝑍𝑌 𝑉(𝑥, 𝑡)

𝑑²𝐼

𝑑𝑥²
= 𝑍𝑌 𝐼(𝑥, 𝑡)

                            (3)   

                                    

 
At each node of the line corresponds a certain number of 

variables which define the state of this node, it is about the 
voltage V, the intensity of the current I of the phase angle θ 

with the node considered relative to a reference phase, the 
active powers P and reactive Q taken at this node of the line.  

III. STOCHASTIC MODEL BY MARKOV CHAIN 

Formally, the methodological approach can be used to 
analyze the behavior of the signal in the transmission lines in a 
probabilistic way against the random and unpredictable 
instability phenomena on the network. As stated in [24] [25], 
the concept of stochastic approach is adapted to this type of 
problem, it makes it possible to eliminate superfluous 
information. Thus, the reality of physical equations is partly 
translated in random terms because the variations are 
unpredictable. The generated stochastic behavior is such that 
the system evolves under the influence of a random force, 
even if the motion is governed by the dynamic equations. 

A. Markov process  stochastic chain 

Stochastic process is any process describing the evolution 
in time of a random phenomenon [1-2]. Mathematically it is 
defined as a collection of random variables defined on a 
common probability space, taking values in a common set and 
indexed by a variable t, usually representing time [1-3], [27]. 
Let X(t) be a random variable evolving over time. The 
sequence of index rolls 1, 6, 2, 5 where X1 = 1, X2 = 6, X3 = 
2, X4 = 5 is defined as Markovian process if its evolution does 
not depend on its past but only on its present state. This 
process can be established by a theoretical model called 
Markov Model [25]. The approach proceeds with two main 
states, the hidden state and the observable state, the first of 
which considers that the states of the system are not 
observable but emit observable signals that are weighted by 
their probability. The second is said to be observable because 
the states are directly observable from the transition matrix 
and that of initialization. The Markov model, Hidden Markov 
Model (HMM) λ, in Figure 4 is characterized by the 
components defined as following [26]: Let {π, A, B} be the 
triple matrix variables whose matrices of initial probabilities, 
probabilities of transitions and probabilities of observations of 
the hidden Markov model. The states are represented by 
vertices, the alphabet of states: S= {S1, S2, ..., Sn}, a set of 
events O = {O1, O2, ..., Ok} that occur when one enters a 
state. They are also called emissions or observations. A 
transition probability matrix A={aij = P (sj |si)}, verifying 
∑ 𝑎𝑖𝑗

𝑁
𝑗=1  = 1, an initialization vector 𝜋={𝜋𝑡 = P(st)} verifying 

∑ 𝜋𝑡
𝑁
𝑡=1  = 1 Probabilities of starting: these are the probabilities 

of starting in one state or another (point 0) and a matrix of 
probabilities of observations B={bt(0t) : P(0t|st)} also called 
emission probabilities, each expressing the probability of an 

observation of generated in state st. Also ∑ 𝑏𝑇
𝑗=1 t(oj) =1. 

 

 

Figure 3.  Model of a finite state Markov chain [21]. 
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B. Choice of the states lines transmission  

The system considered being the transmission lines are 
characterized by the passage of magnitudes in the circuit. Each 
node and each point contain several variables that must be 
monitored, including voltage, phase angle, powers, and current 
intensity. We consider the whole of each point of the studied 
line as a universe where we do not know each other when and 
where the signal can undergo perturbations, fluctuations or 
variations. The universe is symbolized by S and represents the 
states of the system or length of the aluminum line with a 
voltage of 20kV. 

C. Adaptation 

States: S.  
They give at a given moment, the description of the 

system. They correspond to the classes of our model (s1, s2, 
s3, s4, s5, s6, s7, s8, s9, s10). These 10 states model the 
hidden state of the system.  

Transitions: A.  
They are the state changes. These are the probabilities of 

moving from one class to another. We propose in Figure 4, the 
model knowing the possible states of the system, which can 
appear the perturbation with the distribution of probability. 

D. Proposed model 

 

 

Figure 4.  Left-right model of the hidden process will correspond to the state 

of the system. 

This model from “Yakam Matrix” developed into interface 
of plasma signals in electric network is appropriated and can 
have some applications in renewable energy and hydroelectric 
energy [8]. Traditionally, nonblocking networks are designed 
to reduce the number of the cross-points. Since this is the most 
expensive part in a network. Even though in many modern 
technologies, the cost of cross-points is no longer a main issue 
as per the physical dimension and the control complexity of a 
network [23]. In this model, the set of routes has one vertex 
for every first stage switch in the network and one vertex for 
every third stage switch in the network. An edge is added 
between a vertex in the first set and a vertex in the second set 
for every single connection that needs to be routed from an 
input of the switch corresponding to the first vertex then an 
output of the switch corresponding to the second vertex. A key 
advantage of the Markov random approach is that it has 
rigorously provable performance bounds rooted in deep results 
in mathematical statistics. From a practical point of view, this 
approach based on the hidden Markov Approach uses all the 
macroscopic information about the unpredictable fluctuations 

and disturbances in a medium voltage network to compute the 
actual the state and the parameters of the distribution system. 
Furthermore, this approach with the contribution of the 
“Yakam Matrix”[8] allows to establish the quantitative 
approximations of the current I and the voltage V in non-
steady state conditions in order to efficiently deduct the error 
percent [18] between the experimental and the simulated 
results. However, this approach still needs further 
consideration for an effective controllability of the electrical 
signal instabilities. 

IV. RESULTS AND PERSPECTIVES 

In this part, we consider two variables which are voltage 
and current intensity. We will observe their behavior against 
different demands. First, we initialize the parameters {π, A, 
B}. The size considered is that of 10 states that can generate 
possible transitions of the random events for MCMES: 
Multiparameter control modelling electrical signal.  

A. Initialization of Matrix Indicators 

The electrical signals of this study covered by Markov lead 
to some specificities of the system for its observability during 
the phase transition of what is initialized. Therefore, the 
matrix A is that of transition, B is that of observation and π 
leads to the conditions of Dirichlet of initialization. 

a) Transition Matrix: A 

 
𝑆1     𝑆2   𝑆3    𝑆4    𝑆5     𝑆6      𝑆7    𝑆8 𝑆9 𝑆10 

  

𝑨:

[
 
 
 
 
 
 
 
 
 
1/2 0 0 0 0 1/2 0 0 0 0
0 1 −3/4 0 0 0 0 0 0 3/4
0 0 1 0 0 0 0 0 0 0

2/6 0 0 2/6 2/6 0 0 0 0 0
0 0 0 0 1/2 0 0 0 0 1/2
0 0 0 0 0 1 0 0 0 0

1/4 0 0 0 0 0 1/4 1/4 1/4 0
0 0 0 −1/2 1 0 0 1/2 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1/2 0 0 1/2]

 
 
 
 
 
 
 
 
 
𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9

𝑆10

 

 

b) Emission Matrix: B   
𝐼(𝑡) 𝑉(𝑡) 𝑝(𝑡) 𝑞(𝑡) 𝜃(𝑡) 

 

B:

[
 
 
 
 
 
 
 
 
 

0 0 1 0 0
1 0 0 0 0
0 1/2 1/2 0 0
0 0 0 0 1

1/3 0 1/3 0 1/3
0 0 0 1 0
0 1/4 1/4 1/4 1/4
1 0 0 0 0
0 0 0 1/2 1/2

1/3 1/3 0 1/3 0 ]
 
 
 
 
 
 
 
 
 
S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

 

 

c) Initialization vector 

  

𝜋 = [1 0 0 0 0 0 0 0 0 0] 
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Figure 5.  Model of a network designed to simulate the signal of the 

quantities.  

B. Simulation  

Using MATLAB, we designed the typical network of 
Figure 5, the latter consists of the sensors installed at the posts, 
the loads at one end and the other the three-phase source with 
phase considered the section AB of figure 1, the sensors 
(sensors) installed on poles allowed to visualize the different 
behaviors. The signals were unpredictable load, instability of 
the source and the disconnection of one phase. 

The result presented in (Figure: 6-9) are states that have 
the maximum probability of having generated the possible 
signals injected.  

 

Figure 6.   (a) (b).  Model λ result by the initialization parameters without any 

solicitation. 

In the figure 6 (a), each element of the data series is given 
by the sum of the signal contribution Si, which corresponds to 
the voltage caused by electrical currents injected shown under 

a periodical model Si = Ssin(2/J+);  is the phase of the 
signal [23], [28]. The random noise with zero mean and more 
regular disturbance, whose average value is not constant 
during data acquisition is only applied on sinusoidal trend. 

 

 

Figure 7.  Signal of the intensity of the current is subjected to stressing of the 

overloads (electric motor) to the state s3 of its universe.  

This result applies in electrotechnics for the random 
phenomena observed in medium voltage network at 
microscopic scale. 
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Figure 8.  Normal three-phase behavior of the signals I (t), V (t) and the 

behavior in case of the instability of the generator of i_n. 

 

 

Figure 9.  Instability of I(t) in case of disconnection of a phase of 3. This 

figure shows that the current I can drop to less than 20A while remaining 

higher than zero.  

 

Figure 10.  Simulation vs experimental results error percent based on the 

normal three-phase behavior of the signals I(t) and V(t) in non-steady state 

conditions of the Figure 8. 

In the production, transport and the distribution of the 
electrical energy, there is significant wastage of this and the 
ferromagnetic effects that randomly make variate the network 
parameters; current and voltage through the transportation 
phase and during the displacement time. This compromises to 
the expected power supply against the utilization demand [16]. 
The Markov random approach with the application of the 
network parameters as per the fluctuations below studied 
opens in the electrical systems random behavior, significant 
conditions of the current periodicity as shown in Figure 6. 
However, the Figure 9 shows that the current trend remains 
higher than zero although the existing fluctuations at the input, 
throughout the network and at the output.   

V. CONCLUSION  

From this investigation, it is obvious that the electrical 
signals in the medium voltage networks constitute a 
multivariable system whose dynamic states and the related 
behaviors are unpredictable because of the random effects and 
the risks to be managed at any time. The number of variables 
to be defined is not exhaustive and converges to an infinite 
sequence difficult to manage in the classical topological space 
of functions. The network is exactly a multivariable MIMO 
(multiple input and multiple output). The statistical approach 
and the probability approach seem to require the filtering of 
the matrix of the advanced probability triplet (π, A, B). With 
the help of MATLAB, the typical virtual network seems to 
agree with the realities of ground in the exploitation with the 
National Society of Electricity. The Figures 7 and 8 
demonstrate the coherence of the theoretical probabilistic 
method based on the Markov random approach and provide 
satisfactory deviations in term of amplitude which is at most 5. 
Even though these results obtained by using MATLAB 
involve such an error, the application of the Markov random 
approach in electrical networks still requires further 
improvement. However, this approach with the application of 
the network parameters as per the fluctuations observed in the 
7, 8 and 9 tends to establish an advanced model that can take 
in account both the electrical systems random behavior and the 
steady state conditions of the current periodicity. Finally, the 
results of MCMES was used to predict the instabilities of 
ferromagnetism effect, Foucault current, white noise [29], 
electrical fire [30] and others in electrical network since 
production in various hydroelectric power and further random 
renewable energy solar or wind. 
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