

International Journal of Electrical Engineering and Computing
Vol. 3, No. 1 (2019)

1

Original research paper
UDC 519.857:004.021]:669.295.018.8

 DOI 10.7251/IJEEC1901001G

A three-phase mapreduce-based algorithm for

searching biomedical document databases

Milana Grbić

Department of Mathematics and Computer Science, Faculty of Natural Science and Mathematics, University of Banja Luka, Republic of Srpska,

Bosnia and Herzegovina

 milana.grbic@pmf.unibl.org

Abstract—Retrieving information from large document databases is in the focus of scientific research in recent years. In this paper, a

parallel algorithm for searching biomedical documents based on the MapReduce technique is presented. The algorithm consists of three

phases: preprocessing phase, document representation phase, and searching phase. In the first phase, lemmatization and elimination of

stop words are performed. In the second phase, each of the documents is represented as a list of pairs (word, tf-idf index of the word).

The third phase represents the main searching procedure. It uses a specially designed ranking criterion, which is based on a

combination of the term frequency - inverse document frequency (tf-idf) index and the indicator function for each query word. Four

different versions of ranking criteria are proposed and analyzed. The algorithm performances are tested on different subsets of the

large and well-known PubMed biomedical document database. The results obtained by the experiments indicate that the proposed

parallel algorithm succeeds in finding high-quality results in a reasonable time. Comparing to the sequential variant of the algorithm,

the experiments show that the parallel algorithm is more efficient since it finds high-quality solutions in significantly less time.

Keywords- tf-idf index; mapreduce; parallel searching algorithm; biomedical documents;

I. INTRODUCTION

Over the past decades, a huge number of biomedical
documents have been recorded. As a consequence, there is a
growing need for the development of efficient software tools
for searching related literature, such as scientific papers, review
articles, and journal texts. Activities which include the
development of such tools fall into a special area of
information sciences called information retrieval. Information
retrieval is finding information (e.g. texts or documents) from a
large collection of data, that satisfies specific information
queries [1] The information retrieval has a lot of applications,
for example in managing digital libraries, developing search
engines, media search and so on [2]. As a result of intensive
research, a lot of new technologies and solutions have been
developed in this field, such as web search engines, junk-email
filters, news clipping services, etc. [3].

In this paper, the problem of finding relevant biomedical
documents for a given set of query words is analyzed. At the
beginning of the overall searching procedure, it is useful to find
an appropriate form for document representation, which can
make the searching process easier. Also, it is necessary to
establish a criterion for determining the relevance of
documents for the given words. Finally, it is required to check
the documents from the corpus against the established criterion
and perform the sort of documents by their relevance.

The main contribution of this paper is in adapting the
MapReduce parallel programming technique for solving the

problem of searching large biomedical document databases.
After standard procedures of lemmatization and eliminating
stop words, in the main searching phase, the proposed
algorithm uses a specially designed function as the ranking
criterion for determining the relevance of each document in the
document database. After that, the list of documents, sorted by
relevance is created.

The remainder of the paper is organized as follows. In the
next section, the most relevant results related to the
development of searching tools of biomedical documents are
listed. In Section III the proposed algorithm is described in
details. Section IV contains experimental results obtained on
the subset of a PubMed biomedical database. The last section
concludes the paper and proposes some directions for future
work.

II. LITERATURE REVIEW

Existing document searching tools can be classified into
three categories:

i. those that perform the query only in the fields of
citations;

ii. those that perform the query in the full-text article;

iii. those that further process the retrieved citations to
organize them and/or to retrieve further
information [1, 4].

One of the most popular services is the PubMed (available

on https://www.ncbi.nlm.nih.gov/pubmed/), which is a part of

Milana Grbić

2

the National Center for Biotechnology Information (NCBI).

PubMed is designed for searching abstracts by taking query

words as an input, adding Boolean operators into the user

queries and using automatic term mapping (ATM). Through

its ATM process, PubMed service automatically compares and

maps the words from the user query to the lists of pre-indexed

terms (e.g. Medical Subject Headings MeSH). As a result of

this search, PubMed retrieves documents containing the query

terms and if the user query can be mapped into a MeSH

concept, PubMed also retrieves documents indexed with those

MeSH terms. The wide usage of the PubMed service caused

that this service has been expanded for more specific purposes

[5]. Some tools comparable to the PubMed, like RefMed,

MedlineRanker, MiSearch, and iPubMed, base their search on

keywords and/or look for particular citations, title, and

authors. Searching documents with RefMed has a few

iterations. First, RefMed bases its search of query words in the

title and abstract of the document and returns a list of

documents as the result. After that, it explicitly asks the user

for feedback about the relevance of listed documents. RefMed

uses the obtained answers for forming the ranking function.

This procedure is subsequently repeated until the user
receives satisfying results [6]. MedlineRanker is a web

server which uses a given set of abstracts for learning the most

discriminative words related to the topic. The obtained set of

words is used for ranking new abstracts [7]. MiSearch forms

the profile of the user by automatically saving information of

citations viewed by the user during browsing. By using that

profile, it calculates the rank of the future search results and

places on the top those articles which are most likely to be

seen by user [8]. Interactive PubMed (iPubMed) has two

unique features: allows interactive and approximate search [9].
Another service, also maintained by NCBI, is the PubMed

Central (https://www.ncbi.nlm.nih.gov/pmc/). Unlike the
PubMed which is designed for searching abstracts, PubMed
Central is designed for searching full texts. Since 2000. it has
been available as a free archive of biomedical and life sciences
journal literature at the U.S. National Institutes of Health's
National Library of Medicine (NIH/NLM). Beside the PubMed
Central, some other services for searching full biomedical texts
are in common use, like eTBLAST and QUERTLE [1].
eTBLAST compares documents in the database with the input
query and finds the documents that match best the keywords
extracted from the query by analyzing the word alignment [10].
QUERTLE is a “relationship-driven biomedical search” tool,
which performs queries based on the meaning and the context
of documents [11].

Several information retrieval methods, like boolean queries
and index structures, similarity queries and vector model and
latent semantics indexing are presented in [12]. One of the
crucial steps for finding information stored in literature is the
term identification process. The overview of the state-of-the-art
approaches dealing with this task is presented in [13].

There is a number of tools designed for searching specific
queries. For example, the information extraction system for
locating protein-protein interaction data and collecting those
data in Biomolecular interaction network database (BIND) has
been presented in [14]. Hoffman and Valencia [15] proposed
the so-called iHOP (Information Hyperlinked over Proteins)
web service that uses genes and proteins as hyperlinks between
the sentence and abstracts, which enables better navigation

through information from PubMed. The comparison between
metadata and full-text searching for gene names in two
biomedical literature domains is presented in [16].

To our knowledge, current solutions do not completely
address the specific demand of prioritizing some query words
in the searching process. The aim of our work is to develop
such a searching algorithm, which enables this specific
searching task.

III. THE THREE-PHASE PARALLEL SEARCHING ALGORITHM

A. Problem definition

Searching biomedical document databases belongs to a
class of information retrieval (IR) problems, particularly to the
problems of searching document libraries. The enormous
growth of biomedical data and the need for finding relevant
data with specific purposes, like biocuration, in vitro
experiments and gene annotations, make this problem specific
to other IR problems. It is well known that biomedical data are
Big data and they can be broken by 3V characteristics:
Volume, Velocity, and Variety. Therefore, big data
technologies are increasingly used for biomedical informatics
research and the problem of searching biomedical documents
can be a matter of specific investigation. Although there is a
number of sophisticated searching tools available, to our
knowledge, a searching task which involves the relevance of
specific words has not been adequately addressed. The problem
considered in this paper deals with this challenge and the
solution can improve the efficiency of specific searching
requests which arises in biomedical science.

Let a document database be given. The input for the
problem is the list of query words. Optionally, the level of
importance of each query word can be assigned by a numerical
value. The greater numerical value means the more importance
given to the word. The task is to find the most relevant
documents that contain given query words, where the searching
process is guided by a specific ranking function. The output of
the algorithm is the list of documents containing the query
words and sorted by the ranking criteria.

In a more practical explanation, to the user is offered a
simple interface which allows the input of query words which
are the subject of the search. The user can further define the
level of importance of each query word by assigning a
numerical value to each word. As it is mentioned, the greater
numerical value means the more importance of a word. After
the user set the input data, the algorithm enters into the
searching phase, which will be explained in details in the
following sections. As a result, the user gets a list of documents
containing the input words. The list is sorted by the criteria
which will be discussed at the end of this section.

B. Parallel computing environment

In recent years there are a fast growth parallel computing
environments, like multi-core, many-core, GPU or cluster
frameworks. Two most commonly used cluster computing
frameworks are Apache Spark on Hadoop and Open MP/MPI
[17]. Apache Spark is a platform developed at UC Berkley that
exploits in-memory computation for solving iterative
algorithms. The advantage of this platform is that it can be run
in traditional clusters such as Hadoop [18]. OpenMP/MPI
efficiently exploits multi-core clusters architectures such as

International Journal of Electrical Engineering and Computing
Vol. 3, No. 1 (2019)

3

Beowulf. It combines the MPI (Message Passing Interface)
paradigm with shared memory multiprocessing. As it is stated
in [17], Spark efficiently deals with fault tolerance support and
data replication, but it has a clear impact on the speed. On the
other side, OpenMP/MPI provides a solution mostly oriented to
high-performance computing but vulnerable to faults. Spark on
Hadoop framework offers a distributed file system with failure
and data replication management and allows the addition of
new nodes at runtime. In our paper, we use the advantage of
the Spark platform, since it provides a set of tools for data
analysis and management that is easy to use and deploy.

As it is already mentioned, Spark is based on the concept of
maintaining data in memory rather than on disk. It is able to
efficiently deal with iterative computational procedures that
recursively perform operations over the same data. Resilient
Distributed Datasets (RDDs) are fundamental data units in the
Spark environment. Formally, RDD is a distributed memory
abstraction that provides in-memory computation on large
clusters in a fault-tolerant manner. There are two ways of
creating RDD. The first one is to apply some deterministic
operations on data in stable storage while the second one is to
apply these operations on other RDDs. By default, the Spark
keeps RDD in the memory, but if there is not enough RAM it
can split them to the disk [19].

The MapReduce programming model is one of the most
successful implementations for processing and generating large
data sets. In the core of the MapReduce model, there is a map
function that processes key/value pairs to generate a set of the
intermediate key/values pairs. These intermediate key/values
pairs are the input for the reduce function, which merges all
intermediate values associated with the same intermediate key
[20]. This programming paradigm has already been proven as a
successful technique for processing big datasets of clinical,
biomedical, and biometric data [21]. To our knowledge, this
paradigm has not been used for the information retrieval
problem, especially in the field of biomedical documents.

The proposed searching algorithm consists of three phases.
In the first phase, which is described in more details in
Subsection C, data preprocessing is performed. In the second
phase (Subsection D), documents are transformed into a more
suitable and informative form. And finally, in the third phase,
described in Subsection E, documents search based on the set
of query words is done.

C. The data preprocessing phase

Data preprocessing is a common starting step in the text
mining process. It includes several standard procedures, such
as lemmatization and eliminating stop words [22]. In the
beginning, all characters from the set

{'.', '(', ')', '/', '%', '-', ',', ';', ':', '*', '[', ']', '#', '+', '\ ', '\$', '?', '!', '"'}

 are identified so they can be removed in the process of

eliminating stop words. After that, all letters are converted into

the lower case. All words are the further subject of

lemmatization process, i.e. the process of identifying basic

forms of each word [23]. For the lemmatization of the text,

WordNetLemmatizer (nltk.stem package available at

http://www.nltk.org/api/nltk.stem.html) is used in this paper.

Before eliminating standard stop words in English, the list of

stop words is updated with punctation and some other special

signs. In the proposed MapReduce algorithm, all these actions

are performed using the mapValues function.

D. The representation phase

The task of the second phase is to represent each document
as a list of pairs (word, tf-idf index of the word). The term
frequency - inverse document frequency (tf-idf) represents a
statistical measure of the importance of a word for a given
document from a corpus of documents. tf-idf is a commonly
used metric with a property that the higher value of tf-idf
index means the stronger connection between the word and the
document [24]. For a given word t and a document d in a
corpus of documents D, tf-idf is calculated as

 tf-idf (t, d, D) = tf (t, d)* idf (t, D) (1)

where tf(t, d) is the number of occurrences of the word t in
document d, while the value idf may be calculated by the
formula

 idf (t, D) = 𝑙𝑜𝑔
|𝐷|+1

𝑑𝑓(𝑡,𝐷)+ 1
 (2)

The value df (t,D) is the number of different documents in
the corpus D which contain the word t. |D| is the total number
of documents in the corpus D.

E. The searching phase

After representing each document in the form of the
corresponding list of pairs, the algorithm enters the main
phase - searching for the most relevant documents. Let t1,t2,...,
tn be query words and let d be a document from the corpus D.
The relevance of document d for the words t1,t2,..., tn is
calculated by the formula

𝑓(𝑡1, 𝑡2, … , 𝑡𝑛 , 𝑑, 𝐷) = ∑ (𝑤𝑖 ∗ 𝑡𝑓-𝑖𝑑𝑓(𝑡𝑖 , 𝑑, 𝐷)) + 𝛼 ∗ ∑ 𝐼(𝑡𝑖 , 𝑑)𝑛
𝑖=1

𝑛
𝑖=1 (3)

As can be seen from the Eq. (3), the overall ranking
criterion is a combination of two metric functions. The first
one is the sum of tf-idf indices for each query word. In
addition for each query word ti the value tf-idf (ti,d,D) is
multiplied by the weighted factor wi. This approach enables
the ranking criterion to be more robust since each query word
can be given different importance in the overall search. If each
weight is equal to 1, then each word is given the same
importance. The second part of the ranking criterion is the sum
of indicator function I(ti,d) which takes value 1 if the word ti
is present in document d, 0 otherwise. It should be noted that
the sum of indicator functions is multiplied by binary
parameter 𝛼 , taking values from {0,1}. Actually, if 𝛼 = 1
indicator functions are taken into the account, otherwise not.

Finally, if the value of the function f from the Eq. (3) for
the document d1 is greater than the value of that function for
the document d2, then the document d1 is more relevant for the
given query words than document d2.

Actually, by the Eq. (3), four different types of ranking

criteria can be given:

• Ranking criterion I: wi =1, for all i=1,...,n, and 𝛼 =
1 ∶ all query words have the same importance and

indicator functions are taken into the account;

• Ranking criterion II: wi =1, for all i=1,...,n, and 𝛼 =
0 : all query words have the same importance and

indicator functions are omitted;

http://www.nltk.org/api/nltk

Milana Grbić

4

• Ranking criterion III: the weights of query words are

different and 𝛼 = 1 : query words are given different

importance and indicator functions are taken into

account;

• Ranking criterion IV: the weights of query words are

different and 𝛼 = 0 ∶ query words are given different

importance and indicator functions are omitted.

Parameter variation allows the user to influence the

searching procedure. If the parameter 𝛼 is equal to 1, then

the more favored space of the search is the subset of

documents which contains all the query words. On the other

side, if the parameter 𝛼 is set to 0, then the requirement that

the documents contain all query words is not so strict. By

using weights of the query words, the user can additionally

influence the search results. If all the query words should

have the same importance, then all the weights should be

the same (by default they are set to 1). Otherwise, if some

query words are more important than others, the user can

assign greater weights to them. As a consequence, the

existence of those words in the documents will more

influence on the overall value of the ranking function.

Although weights of the query words in Eq.(3) can be

arbitrary assigned, they should be chosen in such a way that

the algorithm still stays stable. Preliminary experiments

indicated that higher precision of the search is achieved if

the value of function f for ranking criteria III and IV is not

significantly different from the function f for ranking

criteria I and II. In our experiment, the weights are chosen

from the range [0,1] and values of function f are slightly

less than in the case where all weights are equal to 1.

IV. EXPERIMENTAL RESULTS

In order to examine the characteristics of the proposed
algorithm, comprehensive experiments have been performed.
For all tests, Intel i7-4770 CPU@3.40GHz with 8GB RAM
and Windows 7 operating system was used. For implementing
MapReduce functions in the Spark-Hadoop environment,
Python programming language was used. All searching
queries were executed on subsets of the PubMed document
database which is publicly available and can be downloaded
from the address ftp://ftp.ncbi.nlm.nih.gov/pub/pmc.

The proposed algorithm was tested on four subsets of the
PubMed database of different sizes: PubMed200,
PubMed1000, PubMed5000, and PubMed10000, containing
approximately 200, 1000, 5000 and 10000 documents,
respectively. Each of these subsets was created by expanding
the previous smaller subset. An exact number of documents
and the total size of each subset are shown in Table 1. All
documents are in the txt format. In all experiments the
following set of 12 query words was used:

{'nucleic', 'acid', 'polarization', 'atomic', 'electrostatic',

'biological', 'experimental', 'rna', 'backbone', 'force', 'center',

'md'}.
TABLE 1. Total number of documents

A. Experiment with ranking criterion I

In the main experiment, each query word is given the same
importance (for all i=1,...,n the values wi are set to 1),
indicator functions are included (𝛼 = 1) and each of four
document subsets is used. For the execution of the proposed
parallel algorithm, six worker nodes in Spark-Hadoop
environment are used.

1) Results obtained on the PubMed200 subset

Table 2 contains the list of the 10 most relevant document
when the smallest subset PubMed200 was used as the test
database.

The third column contains the value f obtained for a
document and given query words. For example, the value
189.52 in the first row (document #1) is calculated by
summing tf-idf indices from the list of the pairs (word, tf-idf
index)

[('center', 1.16), ('rna', 50.32), ('md', 38.13),('force', 25.55),

('electrostatic', 7.71),('experimental', 10.88),('acid', 4.80),

('atomic', 7.25), ('polarization', 6.23), ('backbone', 15.65),

('biological', 2.11), ('nucleic', 7.71)],

TABLE 2. Results on the PubMed200 subset

 Document Value f

1 Acc_Chem_Res_2010_Jan_19_43(1)_40-47 189.52

2 Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741 162.76

3 Acc_Chem_Res_2014_Sep_16_47(9)_2837-2845 82.01

4 PMC5406124 77.95

5 Acc_Chem_Res_2012_Jul_17_45(7)_1122-1131 76.99

6 Acc_Chem_Res_2014_Sep_16_47(9)_2812-2820 70.09

7 Acc_Chem_Res_2014_Oct_21_47(10)_3118-3126 64.92

8 Acc_Chem_Res_2012_Aug_21_45(8)_1258-1267 63.04

9 Acc_Chem_Res_2012_Dec_18_45(12)_2035-2044 60.81

10 Acc_Chem_Res_2014_Jun_17_47(6)_1825-1835 58.86

Subset Number of doc. Size (in MB)

PubMed200 185 7.74

PubMed1000 1086 51.1

PubMed5000 4801 166

PubMed10000 10389 354

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc

International Journal of Electrical Engineering and Computing
Vol. 3, No. 1 (2019)

5

and the number 12, since all query words are present in the
document Acc_Chem_Res_2010_Jan_19_43(1)_40-47. On
the other side, document #10 (Acc_Chem_Res_2014_-
Jun_17_47(6)_1825-1835) contains only 6 query words with
the following tf-idf indices

[('acid', 10.86), ('backbone', 0.63), ('rna', 3.00),

('biological', 1.20),('nucleic', 36.47), ('electrostatic', 0.70)]

most of which indices are smaller than for the previously
considered document #1.

2) Results obtained on the PubMed1000 subset

The list of the top 10 documents obtained on the subset
PubMed1000 is shown in Table 3.

The highest value of the function f in the subset
PubMed1000 is obtained for the document PMC5333189 and
this value is significantly higher than for other top documents.
The main reason is that the query word 'rna' appears more than
550 times in that document, so tf-idf index of the word 'rna' is
very high. Comparing the results from Table 3 to the results
obtained on the subset PubMed200, it can be seen that the

most relevant documents found in the PubMed200 are now at
positions 3 and 6.

3) Results obtained on the PubMed5000 subset

In this section, the experiments are extended to the subset
which contains about 5000 documents. Top ten most relevant
documents from this document subset (PubMed5000) are
shown in Table 4. By comparing these results with the results
obtained on the PubMed1000 subset, one can see that the first
5 documents are the same. Also, it can be seen that documents
which are in the smaller database at positions 6 and 7 are now
at positions 8 and 9.

As an illustration of the behavior of the function f, we
compare tf-idf indices of the same document in different
subsets. At Fig.1 we show tf-idf indices of the document
PMC5371978, which appears at the position 8 in the subset
PubMed1000 and at the position 6 in the subset PubMed5000.
From Fig.1 it can be seen that for each query word, except the
word 'md', tf-idf index is higher in the case of the subset
PubMed5000 than of the subset PubMed1000. Different
values of these indices are a consequence of the fact that the
proportion of the df measure of a word, in the overall
collection D is, in general, lower if the collection D is larger,
and thus the overall idf and tf-idf measures are higher (Eq. (1),
(2)).

TABLE 3. Results on the PubMed1000 subset

 Document Value f

1 PMC5333189 462.71

2 ACS_Nano_2011_May_24_5(5)_3405-3418 239.96

3 Acc_Chem_Res_2010_Jan_19_43(1)_40-47 182.73

4 ACS_Chem_Biol_2013_Dec_20_8(12)_2697-2706 175.25

5 ACS_Nano_2014_May_27_8(5)_4771-4781 165.02

6 Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741 147.67

7 ACS_Nano_2014_Aug_26_8(8)_7620-7629 143.04

8 PMC5371978 130.71

9 ACS_Nano_2014_May_27_8(5)_4559-4570 127.84

10 ACS_Nano_2015_Oct_27_9(10)_9731-9740 126.46

TABLE 4. Results on the PubMed5000 subset

 Document Value f

1 PMC5333189 595.63

2 ACS_Nano_2011_May_24_5(5)_3405-3418 309.29

3 Acc_Chem_Res_2010_Jan_19_43(1)_40-47 235.15

4 ACS_Chem_Biol_2013_Dec_20_8(12)_2697-2706 218.81

5 ACS_Nano_2014_May_27_8(5)_4771-4781 207.88

6 PMC5371978 198.92

7
 Acta_Crystallogr_D_Biol_Crystallogr_2013_Nov_1_69(Pt_11)_2174-
2185

198.19

8 Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741 187.97

9 ACS_Nano_2014_Aug_26_8(8)_7620-7629 182.09

10 ACS_Nano_2011_Feb_22_5(2)_693-729 181.04

Milana Grbić

6

4) Results obtained on the PubMed10000 subset

In Table 5 we show top 10 results obtained on the
PubMed10000 subset. As in two previous cases, the document
PMC5333189 is again the most relevant. The second and the
third results are also the same as in the case of the
PubMed5000 subset. From Tables 4 and 5, one can see that
several other documents appear in both tables but in different
orders.

B. Justification of the proposed ranking criterion I

In order to further examine the performances of different
ranking criteria proposed in Subsection III-E, some additional
experiments are performed. The algorithm is executed on the
subset PubMed1000 three more times, once for each of the
proposed ranking criteria II, III and IV. All the ranking criteria
are calculated by varying parameters in Eq. (3). For 𝛼 =
1, 𝑤𝑖 = 1 for all i the first ranking criterion is formed. The
second one (all query words have the same importance and
indicator functions are omitted) is obtained for 𝛼 = 0 and
 𝑤𝑖 = 1 for i=1,...,n. In the third and the fourth criteria the
weights are different and are defined as follows:

[('nucleic',0.3), ('acid', 0.5), ('polarization', 0.2),('atomic',
0.2), ('electrostatic',0.1),('biological',0.4),('experimental', 0.1),
('rna', 0.7), ('backbone', 0.6), ('force', 0.3), ('center',0.1),
('md',0.01)].

In the third criterion 𝛼 = 1 , while in the fourth 𝛼 =
0. Table 6 contains some comparative results obtained by each
of these four ranking criteria: the value of the function f
(shown in the column Value f) and the position in the ranking
list (column Pos.). From Table 6 it can be seen that the first
and the second most relevant documents are the same for all
four considered criteria. The document, which is on the third
place in cases of the first and the second criteria, is at positions
11 and 12 for the other two criteria. That is a consequence of
the fact that the words with larger tf-idf indices are given
relatively small weights. This is how we can influence the
overall search in cases when we want to give more importance
to some specific query words. In addition, by varying the
value 𝛼 we can further influence the search results by favoring
those documents which contain all or most of the query words.

Figure1. tf-idf indices of the document PMC5371978 in different documents subsets

TABLE 5. Results on the PubMed10000 subset

 Document Value f

1 PMC5333189 557.43

2 ACS_Nano_2011_May_24_5(5)_3405-3418 289.16

3 Acc_Chem_Res_2010_Jan_19_43(1)_40-47 241.5

4
Acta_Crystallogr_D_Biol_Crystallogr_2013_Nov_1_69(Pt_11)_2174-

2185
212.22

5 PMC5371978 211.05

6 ACS_Nano_2016_Jul_26_10(7)_7117-7124 206.45

7 ACS_Nano_2011_Feb_22_5(2)_693-729 205.07

8 ACS_Chem_Biol_2013_Dec_20_8(12)_2697-2706 204.57

9 ACS_Nano_2014_May_27_8(5)_4771-4781 191.81

10 Acc_Chem_Res_2014_Jun_17_47(6)_1731-1741 174.92

0
10
20
30
40
50

tf
-i

d
f

in
d

ic
es

query words

tf-idf indices of the document PMC5371978 in different
documents subsets

PubMed1000 PubMed5000

International Journal of Electrical Engineering and Computing
Vol. 3, No. 1 (2019)

7

C. Justification of using a parallel algorithm

In order to justify the usage of MapReduce paradigm the
sequential algorithm is also developed and the performances
of the parallel and sequential variants are compared. Table 7
contains execution times of both parallel and sequential
algorithms for different document subsets. In the first column,
the name of each subset is shown. In the last two columns,
total execution times of parallel and sequential algorithms are
shown, respectively, with the mark N/A in the case when
sequential algorithm could not find a solution in a reasonable
time. It should be noticed that obtained ranking lists of both
algorithms are the same. From Table 7 one can easily see that
the parallel algorithm is significantly faster than the sequential
one: for the smallest set about 20 times, for the subset
PubMed1000 about 80 times, while for the set containing
about 5000 documents the parallel algorithm is faster more
than 150 times.

V. CONCLUSION AND FUTURE WORK

Developing practical methods for searching biomedical
documents is of great interest in the scientific community. In
this paper, a three-phase parallel searching algorithm is
proposed. The algorithm is implemented in the Spark-Hadoop
platform using the MapReduce paradigm. The searching
criterion is specially designed as a combination of the tf-idf
index with weighted factors and indicator functions. The
benefit of this approach is that the user can influence the
overall searching process by setting the parameters of the
ranking function. The algorithm allows the user to prefer some
query words by assigning larger weights to them. In addition,
by setting the binary parameter 𝛼 to 1 or 0, the user can
influence the search results in the sense whether the most
relevant documents should contain all query words or not.

The proposed algorithm is tested on the well-known
PubMed biomedical document database. Experimental results

clearly indicate the high usability of the proposed algorithm.
Firstly, the algorithm succeeds to find satisfactory results in a
reasonable time. Secondly, the obtained results are consistent
with regards to the size of the document database. And finally,
we show how to influence the final results by choosing
different values of the ranking function parameters, as it is
demonstrated in Subsection IV-B.

This research can be extended in several ways. In order to
decrease needed memory space, it could be useful to represent
documents in a more efficient way by using some hashing
technique and adopt ranking criteria to deal with such
representation. Our parallel algorithm could also be combined
with cluster-based approaches to browsing large document
collections. The purpose of this hybridized approach could be
the speeding up the searching process and the reducing of the
overall searching space by considering only particular cluster
representatives.

TABLE 7 The time of execution

Subset Time (in minutes)

 Parallel Sequential

PubMed200 0.72 14.6

PubMed500 3.1 266.14

PubMed5000 14 2180.32

PubMed10000 45 N/A

ACKNOWLEDGMENT

This research was partially supported by Ministry for

Scientific and Technological Development, Higher Education

and Information Society, Government of Republic of Srpska,

B&H, under the project “Development and application of

combinatorial optimization and machine learning methods in

bioinformatics” (2019).

TABLE 6. Results on the PubMed1000 obtained by using different ranking criteria

Document Crit. I Crit. II Crit. III Crit. IV

 Value f Pos. Value f Pos. Value f Pos. Value f Pos.

PMC5333189 462.71 1 453.71 1 306.06 1 297.06 1

ACS_Nano_2011_May_24_5(5)_3405-3418 239.96 2 230.96 2 158.22 2 149.22 2

Acc_Chem_Res_2010_Jan_19_43(1)_40-47 182.73 3 170.73 3 69.01 11 57.01 12

ACS_Chem_Biol_2013_Dec_20_8(12)_2697-

2706
175.25 4 164.25 4 103.01 4 92.01 4

ACS_Nano_2014_May_27_8(5)_4771-4781 165.02 5 157.02 5 112.69 3 104.69 3

Acc_Chem_Res_2014_Jun_17_47(6)_1731-

1741
147.7 6 138.69 6 95.88 6 86.88 6

ACS_Nano_2014_Aug_26_8(8)_7620-7629 143.04 7 136.03 7 96.25 5 89.25 5

PMC5371978 130.71 8 118.71 9 67.65 13 55.65 13

ACS_Nano_2014_May_27_8(5)_4559-4570 127.84 9 120.84 8 89.52 7 82.52 7

ACS_Nano_2015_Oct_27_9(10)_9731-9740 126.46 10 118.46 10 84.96 8 76.96 8

ACS_Nano_2011_Feb_22_5(2)_693-729 121.03 11 111.03 13 42.54 19 32.54 21

ACS_Nano_2015_Jan_27_9(1)_251-259 119.71 12 113.71 11 81.79 9 75.79 9

ACS_Chem_Biol_2015_Mar_20_10(3)_652-

666
105.34 15 96.34 15 68.05 12 59.05 11

Milana Grbić

8

REFERENCES

[1] A. Manconi, E. Vargiu, G. Armano, & L. Milanesi. “Literature retrieval
and mining in bioinformatics: state of the art and challenges.” Advances
in bioinformatics, 2012, 2012. URL:
https://www.hindawi.com/journals/abi/2012/573846/

[2] R. Baeza-Yates & B. Ribeiro-Neto. “Modern information retrieval”,
volume 463. ACM press New York, 1999.

[3] A. Singhal. “Modern information retrieval: A brief overview.” IEEE
Data Eng.Bull., 24(4):35-43, 2001. URL:
http://sifaka.cs.uiuc.edu/course/410s12/mir.pdf

[4] A. K Bajpai, S. Davuluri, H. Haridas, & G. Kasliwal, “In search of the
right literature search engine (s)” Technical report. URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.853.6711&rep
=rep1&type=pdf

[5] Z. Lu. “PubMed and beyond: a survey of web tools for searching
biomedical literature.” Database, 2011, 2011. URL:
https://academic.oup.com/database/article/doi/10.1093/database/baq036/
460587

[6] H. Yu, T. Kim, J. Oh, I. Ko, S. Kim, & W. S. Han “Enabling multi-level
relevance feedback on PubMed by integrating rank learning into
DBMS” In BMC bioinformatics (Vol. 11, No. 2, p. S6). BioMed
Central, , (2010, April). URL:
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-
2105-11-S2-S6

[7] J. F. Fontaine, A. Barbosa-Silva, M. Schaefer, M. R. Huska, E. M. Muro
& M. A. Andrade-Navarro “MedlineRanker: flexible ranking of
biomedical literature” Nucleic acids research, 37(suppl_2), W141-
W146, (2009) URL:
https://academic.oup.com/nar/article/37/suppl_2/W141/1136707.

[8] J. David, A. S. Ade, Z. C. Wright, V. B. Aaron, & B. D Athey
“MiSearch Adaptive PubMed Search Tool” Bioinformatics, (2008).
URL: https://academic.oup.com/bioinformatics/article/25/7/974/209803

[9] J. Wang, I. Cetindil, S. Ji, C. Li, X Xie, G. Li & J Feng. “Interactive and
fuzzy search: a dynamic way to explore MEDLINE” Bioinformatics,
(2010), 26(18), 2321-2327 URL:
https://academic.oup.com/bioinformatics/article/26/18/2321/208288

[10] J. Lewis, S. Ossowski, J. Hicks, M. Errami, & H. R Garner.”Text
similarity: an alternative way to search MEDLINE.” Bioinformatics,
22(18):2298-2304, 2006. URL:
https://academic.oup.com/bioinformatics/article/22/18/2298/318080

[11] P. Coppernoll-Blach. “Quertle: the conceptual relationships alternative
search engine for pubmed”. Journal of the Medical Library Association:
JMLA, 99(2):176, 2011. URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066589/

[12] H. Shatkay & R. Feldman. “Mining the biomedical literature in the
genomic era: an overview.” Journal of computational biology,
10(6):821-855, 2003. URL:

 http://research.cs.queensu.ca/home/shatkay/papers/JCB03.pdf

[13] M. Krauthammer & G. Nenadic. “Term identication in the biomedical
literature” Journal of biomedical informatics, 37(6):512-526, 2004.
URL:

 https://www.sciencedirect.com/science/article/pii/S1532046404000826

[14] I. Donaldson, J. Martin, B. De Bruijn, C. Wolting, V. Lay, B. Tuekam,
S. Zhang, B. Baskin, G. D. Bader, K. Michalickova, et al. “PreBIND and
Textomy -mining the biomedical literature for protein-protein
interactions using a support vector machine.” BMC bioinformatics,

4(1):11, 2003. URL:
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-
2105-4-11

[15] R. Hoffmann and A. Valencia. “Implementing the iHOP concept for
navigation of biomedical literature.” Bioinformatics, 21(suppl_2):ii252-
ii258, 2005. URL: https://www.ncbi.nlm.nih.gov/pubmed/16204114

[16] B. M Hemminger, B. Saelim, P. F Sullivan, and T. J Vision.”
Comparison of full-text searching to metadata searching for genes in two
biomedical literature cohorts.” Journal of the Association for
Information Science and Technology, 58(14):2341{2352, 2007. URL:
https://ils.unc.edu/bmh/pubs/Comparison_of_Full-
Text_Searching_to_Metadata_Searching-JASIST-2007.pdf

[17] Jorge L Reyes-Ortiz, L. Oneto, and D. Anguita. “Big data analytics in
the cloud: Spark on hadoop vs mpi/openmp on beowulf. “Procedia
Computer Science, 53:121-130, 2015. URL: https://ac.els-
cdn.com/S1877050915017895/1-s2.0-S1877050915017895-
main.pdf?_tid=2647e086-b7cf-40ab-86ec-
943fbf9ed7e4&acdnat=1551874338_612707b3940ac1285a2478d8de07
bb0e

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker & I. Stoica
“Spark: Cluster computing with working
sets”, HotCloud, (2010).,10(10-10), 95. URL:
http://static.usenix.org/events/hotcloud10/tech/full_papers/Zaharia.pdf

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J
Franklin, S. Shenker, and I. Stoica. “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.” In
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2-2. USENIX Association, 2012.
URL: https://www.usenix.org/system/files/conference/nsdi12/nsdi12-
final138.pdf

[20] J. Dean and S. Ghemawat. “MapReduce: simplied data processing on
large clusters.” Communications of the ACM, 51(1):107{113, 2008.

 URL:https://www.usenix.org/legacy/events/osdi04/tech/full_papers/dean
/dean.pdf

[21] E. A. Mohammed, B. H. Far, & C. Naugler, “Applications of the
MapReduce programming framework to clinical big data analysis:
current landscape and future trends”, BioData mining, (2014), 7(1), 22.
URL: https://biodatamining.biomedcentral.com/articles/10.1186/1756-
0381-7-22

[22] S Vijayarani, J Ilamathi, and Ms Nithya. “Preprocessing techniques for
text mining-an overview”. International Journal of Computer Science &
Communication Networks, 5(1):7-16, 2015. URL:
https://www.ijcscn.com/Documents/Volumes/vol5issue1/ijcscn2015050
102.pdf

[23] T. Korenius, J. Laurikkala, K. Järvelin, and M. Juhola. “Stemming and
lemmatization in the clustering of finnish text documents” In
Proceedings of the thirteenth ACM international conference on
Information and knowledge management, pages 625-633. ACM, 2004.
URL:
https://tampub.uta.fi/bitstream/handle/10024/66142/stemming_and_lem
matization_in_the_clustering_2004.pdf?sequence=2&isAllowed=y

[24] J. Ramos. “Using tf-idf to determine word relevance in document
queries.” In Proceedings of the first instructional conference on machine
learning, volume 242, pages 133-142, 2003. URL:
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-
Word-Relevance-in-Queries-
Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c

Milana Grbić received her MSc degree
(2016) in Mathematics at the Faculty of
Mathematics at the University of Belgrade.
She is a Ph.D. student in the field of data
mining in bioinformatics. Her research
interests include data classification, data
mining, and bioinformatics.

https://www.hindawi.com/journals/abi/2012/573846/
http://sifaka.cs.uiuc.edu/course/410s12/mir.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.853.6711&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.853.6711&rep=rep1&type=pdf
https://academic.oup.com/bioinformatics/article/22/18/2298/318080
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066589/
https://ils.unc.edu/bmh/pubs/Comparison_of_Full-Text_Searching_to_Metadata_Searching-JASIST-2007.pdf
https://ils.unc.edu/bmh/pubs/Comparison_of_Full-Text_Searching_to_Metadata_Searching-JASIST-2007.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.ijcscn.com/Documents/Volumes/vol5issue1/ijcscn2015050102.pdf
https://www.ijcscn.com/Documents/Volumes/vol5issue1/ijcscn2015050102.pdf
https://tampub.uta.fi/bitstream/handle/10024/66142/stemming_and_lemmatization_in_the_clustering_2004.pdf?sequence=2&isAllowed=y
https://tampub.uta.fi/bitstream/handle/10024/66142/stemming_and_lemmatization_in_the_clustering_2004.pdf?sequence=2&isAllowed=y
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c
https://www.semanticscholar.org/paper/Using-TF-IDF-to-Determine-Word-Relevance-in-Queries-Ramos/b3bf6373ff41a115197cb5b30e57830c16130c2c

