

International Journal of Electrical Engineering and Computing
Vol. 2, No. 2 (2018)

83

Case study
UDC 634.711:632.6/.7:595.77

DOI 10.7251/IJEEC1802083M

Image Processing on Raspberry Pi Cluster

Dušan Marković1, Dejan Vujičić2, Dragana Mitrović2, Siniša Ranđić2

1University of Kragujevac, Faculty of Agronomy, Čačak, Serbia
2University of Kragujevac, Faculty of Technical Sciences, Čačak, Serbia

dusan.markovic@kg.ac.rs, dejan.vujicic@ftn.kg.ac.rs, dragana.mitrovic.94@gmail.com, sinisa.randjic@ftn.kg.ac.rs

Abstract – The development direction of the high-performance computing has been primarily oriented toward improvements in the

number of computing units, and their better organization and interconnection. The central processing units in modern mainframes are

in some cases inadequate for data parallelization, because a large amount of data requires a large number of processing units. This

problem can be partially overcome by introducing embedded devices with enough processing power and with smaller power dissipation,

but the new problems emerge, specifically the problem of their interconnection in a distributed environment. One of such devices is a

Raspberry Pi board, which has four processing cores in the latest revision, and we combined four of such devices in a cluster. These

devices are interconnected via Ethernet router and by using MPI interface, they can be programmed to work as a single unit. We

supplied a set of images that were processed on the cluster and measured its performance.

Keywords – cluster, distributed computing, image processing, Message Passing Interface, parallel computing, Raspberry Pi

I. INTRODUCTION

In the structure of many problems, it is possible to see the
built-in parallelism that raises the issue of computer support for
solving such problems. This has further contributed to the fact
that parallel computers have a significant place in research in
the field of computer technology. The intensive development of
semiconductor technology and its impact on the development
of computing has provided a real basis for parallel computing
[1].

Particularly significant progress in parallel computing was
achieved through computer clusters realized within the TCP/IP
network [2], [3]. In such systems, the parallel computation
process takes place through the exchange of messages [4]. The
best known systems for parallel computing support within the
TCP / IP cluster are MPI (Message Passing Interface) [5] and
PVM (Parallel Virtual Machine) [6].

The first computer clusters were based on local personal
computer networks. The emerging of microcomputers, realized
on the principle of one-board computer, implied the expansion
of the application of computer clusters for parallel computing.
These computer modules usually have standard communication
interfaces (USB, Ethernet, HDMI ...) that allow them to
connect to the necessary peripheral devices, including
connections to different types of computer networks. Typical
representatives of these computer modules are the families of
Raspberry Pi [7] and BeagleBone [8] microcomputers. The
Raspberry Pi modules have proven to be suitable for
implementing a TCP / IP cluster designed to support parallel
computing.

Due to processor and memory characteristics, as well as the
ability to connect to the Ethernet network, Raspberry Pi is a

good basis for the formation of the appropriate computer
cluster. The aim of this paper is to demonstrate the possibility
of realization of the computer cluster based on the Raspberry Pi
3 module connected in the TCP/IP network.

Experience in working with clusters based on personal
computers has demonstrated their significant capabilities in
supporting parallel computing. Particular attention should be
paid to the acceptability of such systems, as they were
significantly cheaper than expensive supercomputers. The
ability to realize clusters on the basis of one-board computers,
such as the Raspberry Pi modules, has further increased the
importance of clusters for parallel computing.

Image processing is one of the applications in which
computing time is a very important factor. This type of
problem has a significant built-in parallelism that allows the
necessary calculations to be realized through the execution of
parallel programs. With this in mind, in the Computer Science
Laboratory at the Faculty of Technical Sciences in Čačak, a
cluster of four nodes based on the Raspberry Pi 3 modules has
been developed.

The primary goal of this development was to explore the
possibility of forming such clusters and their programming
based on the MPI concept. An additional goal was to explore
the possibility of parallel programming based on MPI concept
using the Python programming language. Finally, the cluster
was supposed to be a platform in which students of computer
science would become familiar with the basic principles of
parallel computing and parallel programming.

At the same time, in this Laboratory, the research in the
field of image processing and recognition of forms related to
the monitoring of various phenomena in agriculture is carried

Dušan Marković et al.

84

out. The high processing requirements of this application have
imposed the idea to conduct research within the application of
the developed cluster.

The remainder of the paper is organized as follows. The
second section describes related work in the field of Raspberry
Pi cluster formation and usage. The third section brings out the
importance of image processing and gives introduction to the
done practical example. The fourth section describes the
created Raspberry Pi cluster and its architecture. The fifth
section deals with the message passing interface and its
implementation on the cluster, with the possibility of using the
cluster remotely. The sixth section describes the practical
realization, given results, and discussion. The seventh section
presents with the educational aspects of the cluster. The final
section brings out concluding remarks and future work
directions.

II. RELATED WORK

The authors of [9] managed to create a cluster of 300 nodes
based on Raspberry Pi Model B computers. These units are
equipped with 700MHz ARM11 processor, with 512MB of
operating memory. They used it for the research in areas of
cloud computing, specifically for the purposes of establishing
clusters in the environments without enough financial support
for operating with large data centers. Their predecessors were
authors of [10], which managed to create a cluster of 64
Raspberry Pi Model B computers. Their Iridis-pi cluster is
shown in Fig. 1 [10].

Figure 1. Iridis-pi cluster [2]

With the same computer model, but with less nodes (33
nodes, of which 32 are computational nodes), the author of [11]
succeeded in creating a cluster. Their Beowulf cluster is shown
in Fig. 2 [11]. The authors of [12] also used the same model,
but with 56 nodes separated in four racks. Their goal was to
create a cloud data center with the support of virtualization and
resource management.

Figure 2. The Beowulf cluster [11]

The possibility of using Raspberry Pi cluster as a container
in an edge cloud architecture was investigated in [13]. Cluster
in their work has virtualization possibilities in order to satisfy
PaaS (Platform-as-a-Service) architecture demands, with the
special attention on the portability and container
interconnections. The authors of [14] used 6 Raspberry Pi 1
Model B units to create a cluster for usage in Big Data
manipulation in tourism. They have successfully demonstrated
cluster possibilities in the process of people geolocation.

A cluster of 10 Raspberry Pi Model B nodes was used in
[15] as a honeypot cluster in researching possibilities for
detection and prevention of the SQL injection intruders. In
[16], the authors compared a cluster of 14 Raspberry Pi
modules with Intel Core i5 and Core i7 CPU computers.

Raspberry Pi 2 Model B was used in the construction of
cluster with 25 nodes in [17]. Their goal was to create a cluster
for power measurement and educational purposes, proving that
the excellent performances can be obtained with low power
consumption. Their cluster is shown in Fig. 3 [17]. Previously,
the authors of [18] had the same idea in mind.

Figure 3. A cluster of 25 nodes

In [19], the authors demonstrated an intrusion detection
system for Internet of Things devices by deploying Snort on
Raspberry Pi module. Although they didn’t form a cluster, they
suggested that a cluster would have greater possibilities in a
smart city environment. The author of [20] constructed a
cluster of 8 Raspberry Pi 2 modules in order to facilitate video
streaming in small data centers. In [21], authors made a cluster
consisting of 10 Raspberry Pi 2 Model B, benchmarked it, and
compared its performance with custom supercomputer.

III. PRACTICAL EXAMPLES OF IMAGE PROCESSING

Today, in the world of information and ubiquitous data
obtained by different type of measurements, images represent
one important subset of data. Examples of gathering images
could be satellite maps, radar images, computer tomography
imaging, microscopy slides, forest area, agriculture area, or
other images in the agriculture field that record current
condition in the observed production or research process.

Example of image processing was shown in [22] as a
scientific package for electron microscopy images. Another
application could be found in analysis on images obtained via
X-ray microtomography [23] for problems in porous media
research. Image processing could find a role in food industry
[24]. In the area of agriculture, image analysis could have
important application such as plant extraction in the field [25].

International Journal of Electrical Engineering and Computing
Vol. 2, No. 2 (2018)

85

Also, in agriculture, image processing could be used to
estimate leaf area index from fruit trees [26].

One of the activities in the image analysis is objects
detection and their count. Also, in the research area of an
agronomist, the appliance of object counting as a means to find
parameters of interests in an effective way is of great
importance. Detecting grains of wheat and their number on
some area represent an important factor to determine the yield.
In this paper, as practical example of image processing,
counting of wheat grains was presented.

The main goal in breeding, selection, and production of
wheat is to obtain as much grain yield as possible. The main
components of wheat grain yield are the number of ears per
unit ground area, the number of grains per ear and their mass,
and the weight of 1,000 grains.

During the process of breeding, in the creation of new
varieties, it is necessary to determine the number of grains in
many wheat ears that belong to different varieties. Besides that,
it is also important to select particular varieties with a higher
number of grains in the ear for further selection. In laboratories,
the number of grains per ear was determined by hand counting
individual grains. However, that could take a lot of time, and
represents an additional effort for the laboring people who
perform this action. Nowadays, there are various counters for
determining the number of grains in the ear and masses of
1,000 grains.

Mostly, the grains are poured into the counter, and on the
basis of their passage between the sensors, the counting of the
grain is performed. This operation takes a certain amount of
time depending on the speed of the counter. The advantages of
the counter over the image analysis are the shortened procedure
time and duration of the grain counting.

All the grains from the ears are poured in one container
without taking into account their arrangement. The container is
placed beneath the camera with image processing device which
is used to determine the number of grains from a particular ear
in only a few seconds. In this way, the work of people in
laboratories is improved, the number of grains is determined in
a shorter time period, which is very important when it comes to
the large number of relatively small samples.

IV. RASPBERRY PI CLUSTER

A cluster can be thought of as a set of interconnected
computers. By connecting large number of computers in a
cluster, one can gain potential increase in performance by
doing operations in parallel and distributed environment. A
cluster is usually formed using TCP/IP network with the
support of MPI and PVM.

We constructed a cluster containing four Raspberry Pi 3
Model B modules, whose characteristics are given in Table I,
and its appearance is presented in Fig. 4 [27].

As can be seen from Table I, Raspberry Pi 3 Model B
computer board has significant processing power with quad-
core ARM Cortex A53 processor and 1GB of operating
memory. Furthermore, it possesses great connecting potential,
since it has integrated Bluetooth and Wi-Fi transceivers, as well
as Ethernet port and four USB ports. Of course, its great
capabilities for expansion are seen from large number of GPIO

pins, with various and numerous header expansion boards
available on the market.

TABLE I. RASPBERRY PI 3 MODEL B MODULE CHARACTERISTICS

Feature Description

CPU: Quad-core 64-bit ARM Cortex A53, 1.2GHz

GPU: 400MHz VideoCore IV multimedia

Memory: 1GB LPDDR2-900 MHz SDRAM

USB: 4 ports

Video

outputs:
HDMI, composite video (PAL and NTSC)

Network:
10/100Mbps Ethernet and 802.11n Wireless

LAN

Peripherals: 17 GPIO, HAT ID Bus

Bluetooth: Yes, v4.1

Power

source:
5V via MicroUSB or GPIO header

Figure 4. The appearance of Raspberry Pi 3 Model B

The individual computers in a cluster are called nodes, and
depending on the connection method, they can be
interconnected in several different ways [28] – [30]. In our
case, we have one head node and three computational nodes
(Fig. 5). They are connected in a local network via Ethernet
router, and the appearance of the cluster is given in Fig. 6.

Ethernet Router

Head Node

Computational

Node

Computational

Node

Computational

Node

Figure 5. The architecture of the cluster

Dušan Marković et al.

86

Figure 6. The appearance of the Raspberry Pi 3 cluster

The important aspect of this cluster is its modularity. New
nodes can be added without any restrictions, with only few files
being modified in this process. However, due to the realized
design shown in Fig. 5, new nodes should probably be added in
the racks of four units. Furthermore, this scenario involves
adding new Ethernet switches or routers, and maybe even the
cooling framework. Based on the literature review, the cluster
cooling can be optimally realized as active cooling with fans
and proper air-flow. Of course, this would further require even
a separate space for storing such a device, depending on the
number of units involved.

V. PARALLEL PROCESSING WITH MPI FRAMEWORK

Due to the advancement of computer technology, parallel
processing, as an approach to speeding up the computation
process, is gaining importance. It is particularly important to
use networked computers for parallel execution of loosely
coupled processes. Therefore, each local computer network can
be used as a base for parallel computing. In loosely coupled
processes, the parallel computing is based on message
exchange. In order to provide conditions for parallel
computing, appropriate software support has been developed.
The most famous systems are MPI and PVM [31].

MPI is a communication protocol for programming parallel
computers. Originally, MPI was designed for distributed
memory architectures, but now it can run on almost any
hardware platform, distributed memory, shared memory,
hybrid, and so on. Some advantages of using MPI are: support
for full asynchronous communication, grouping of processes
based on the context, flexibility, and portability.

The emergence of small, but sufficiently powerful
computer modules, along with their good communication
features, such as Raspberry Pi and BeagleBone, enabled the
formation of computer clusters suitable for parallel processing.
In order to form a cluster, there has to be at least 2 or 3 nodes
(Raspberry Pi) and if it is not enough, it is possible to add more
later on. Programs on the Raspberry Pi module are executed
under the control of the Raspbian Jessie operating system,
which is based on the Linux / Debian operating system [32].

After installing Raspbian on each node of a cluster, it
should be possible to generate SSH keys for their IP addresses.
SSH stands for secure shell and it is used as the encrypted
remote login protocol and a way to communicate with other
nodes on the same network. SSH can be configured over Wi-Fi
and once configured SCP (Secure Copy) and SFTP (Secure
File Transfer Protocol) can be used for transferring files and
directories directly from one node to another [33].

It is also possible to directly run commands on the selected
node via SSH, change host names of the nodes, or even
shutdown a node. At this point, it is good to have another SD
card with more memory to serve as a disk for the cluster.
Depending on the type of the cluster that is being made, this
additional memory can be available to all nodes or just the head
node.

In addition to installing and configuring the operating
system, it is necessary to install MPI software on the SD card
on each of the Raspberry Pi modules. In this case, the MPICH3
version is installed. Also, an MPI4PY library is installed that
allows programming clustered nodes in the Python
programming language.

Usage of the identical system software on all nodes is
enabled by cloning the SD module. Also, each node is assigned
a unique name (HostName) and nodes are enabled to work with
the SSH protocol. The IP addresses of each node are stored in
the so-called machine file. This file has to be located on each
node and uses MPICH3 to communicate and send/receive
messages between nodes [34].

Finally, it is necessary to generate SSH keys to allow
management of each Raspberry Pi module without using the
username and password. Fig. 7 shows a schematic
representation of the MPI cluster structure with hostname, IP
addresses, and SSH keys used.

Figure 7. The example of hostname and SSH keys in the MPI cluster based

on the Raspberry Pi 3 module

International Journal of Electrical Engineering and Computing
Vol. 2, No. 2 (2018)

87

The research with Raspberry Pi cluster for image
processing has showed wider aspects of the possibilities of
such cluster. Accordingly, the future research has been defined.
It is primarily focused on the development of the parallel
algorithms and corresponding parallel applications. Also, the
further research implies the development of the cluster with
larger number of nodes.

The positive feedback from the usage of this cluster and the
development of parallel applications has given an idea to
provide this cluster to the end users via Internet. The cluster
would be a part of a server environment. It would serve the
user demands for the software support based on the parallel
processing. Regarding this idea, the corresponding software
support was realized and satisfactory preliminary results were
obtained. The structure of such system is shown in Fig. 8.

Figure 8. The structure of the system supporting access to the cluster via

Internet

Within the proposed system of using the computer cluster
based on the Raspberry Pi modules, it was intended that the
end user can access the corresponding Web application on the
remote server. This process would be done in the Web browser.
After the successful authentication, the user is presented with
the possibility to deploy his parallel application to the cluster
nodes and start it. The results obtained by parallel processing
can be forwarded to the user or put on the server storage. In the
latter case, the user would access the results via custom Web
application.

VI. RESULTS AND DISCUSSION

A cluster of four Raspberry Pi (RPi) devices was
established with software support and configuration for parallel
processing. In this purpose, Mpi4Py was used for message
passing between head node and other computing nodes
intended for the program execution in the parallel mode. Taken
images were streamed to the cluster and distributed to the
computing nodes.

On every node, a software support for image processing
was also installed and that was achieved with scikit-image
library. This is a library that contains a collection of algorithms
and utilities for image processing, written in Python
programming language, with some sections implemented in
Cython. Scikit-image has Open Source license and represents
software tool that could be used without restrictions under
Modified BSD license [35].

The example of image processing, which was running as a
test application, is represented by objects detection and their
counting in arrival array of images.

Figure 9. Grains of wheat

The image of grain wheat is shown in Fig. 9 and it was used
as a sample for testing image processing on the cluster. Test
case for processing images in parallel mode was implemented
by using the appropriate algorithm from scikit-image library on
every node.

num_objects = len(np.unique(label_image)) – 1 (1)

The images are analyzed in order to detect the edges of the
objects and to label them. After that, the Python code to count
labeled image is relatively easy, as shown in (1). Presented line
code (1) calculates variable num_object (number of objects)
obtained by function len() which gives the number of items in
an array. In this case, np.unique(label_image) returns the sorted
unique elements of an array, and that would be labeled image.
Final value would be result of the len() function subtracted by
1, because the background is labeled by 0.

Another way to test image analysis on Raspberry Pi cluster
is to use Watershed algorithm for segmentations. This process
represents a method for separating objects from background
and also separating the objects. Image analysis in the process of
segmentation has the aim to decide which pixel belongs to
which object.

After this step, usually there are small holes on the image
that have to be filled. This is necessary to carry out to avoid the
detection of small holes as real objects. On segmented objects
by Watershed algorithm, their labels can be set and then using
Python expression (1) it is possible to easily count objects on
the image.

Initially, the testing was performed by processing 3 images
on one Raspberry Pi device using scikit-image library for Edge
Detection (ED) of the objects. Other case was processing of the
same images on one Raspberry Pi device using Watershed
segmentation (WS) algorithm. The same process was
conducted on three computing nodes using one CPU core.
Results of execution times for overall processing on 3 images
are shown in Table II. The biggest time of 14 seconds is needed
for execution of Watershed algorithm and for 3 images. The
same process transferred to parallel analysis on three nodes
takes about 4.9 seconds.

Dušan Marković et al.

88

TABLE II. RESULTS OF PROCESSING A SEGMENT OF 3 IMAGES

Number of images

WS

algorithm

 1 RPi

ED

 1 RPi

WS

algorithm

4 RPi

Cluster

ED

 4 RPi

Cluster

Time (s)

3 14.0 11.2 4.9 4.9

In the next step, a new segment of 6 images was used and

the testing process was repeated with addition of using two
CPU cores on every Raspberry Pi computing node. According
to the results (Table III), the sequence of 6 images was
processed in 28 seconds, and in parallel mode it was done in 5
seconds. In this case, the time for parallel processing does not
change significantly in regard to the first cluster test, because
there is also one CPU per image in the test frame.

TABLE III. RESULTS OF PROCESSING A SEGMENT OF 6 IMAGES

Number of images

WS

algorithm

 1 RPi

ED

 1 RPi

WS

algorithm

4 RPi

Cluster

ED

 4 RPi

Cluster

Time (s)

6 28.0 22.3 5.0 5.1

The same situation is in the third test on the cluster, which

results are shown in Table IV. There were 9 images transferred
to three computing nodes and every computing node was using
3 CPU cores to process arriving images. There are the same
analogies in the result set with Raspberry Pi nodes using 4 CPU
cores each to process 4 transferred images.

TABLE IV. RESULTS OF PROCESSING A SEGMENT OF 9 IMAGES

Number of images

WS

algorithm

1 RPi

ED

1 RPi

WS

algorithm

4 RPi

Cluster

ED

4 RPi

Cluster

Time (s)

9 42.0 33.5 5.3 5.2

The complete test results from processing a sequence of

images on one Raspberry Pi device and a cluster of four
Raspberry Pi devices is presented in Fig. 10.

0

5

10

15

20

25

30

35

40

45

3 6 9

T
im

e
 (

s)

Number of images

WS algorithm - 1 RPi ED - 1 RPi

WS algorithm - 4 RPi Cluster ED - 4 RPi Cluster

3
 R

P
i
p

ro
c
e
ss

o
r

6
 R

P
i
p

ro
c
e
ss

o
r

6
 R

P
i
p

ro
c
e
ss

o
r

9
 R

P
i
p

ro
c
e
ss

o
r

9
 R

P
i
p

ro
c
e
ss

o
r

3
 R

P
i
p

ro
c
e
ss

o
r

Figure 10. Results after testing of image processing on Raspberry Pi cluster

According to the processing time of image sequence on one
node, there are linear dependences of the number of images in
testing segment. One segment of the processing could be
divided on cluster nodes and executed in an acceptable time
frame. In our example, this processing time frame was
approximately 5 seconds. In practical use, every segment for
processing that contains 3 to 12 images could be processed on
cluster in the expected time frame. In this way, the result of
image analysis and object counting could be obtained near the
location where cluster was placed and close to real time.

In the form presented in this paper, cluster could be
deployed on location where images were captured.
Immediately, the images could be processed without the need
to send all of them to the remote server or cloud. Powerful
computer systems on cloud platform would be ideal for more
or less complex image processing. A cluster of Raspberry Pi
single board computers can respond to the similar request, but
with the longer execution time of processing. The advantage of
the cluster would be its portability in terms of physical setup
near the location where the images are taken. The cluster could
be easily extended with additional computing nodes by making
small changes in configuration of the head node.

In our example, three computing nodes were used for
execution of the sequence of images. According to the
presented results, the cluster with 3 Raspberry Pi computing
nodes using maximal processing power can respond to the load
of 12 images in 5 seconds, which is equal to 2.4 images per
second. Accordingly, this dependence could be used to
calculate necessary number of computing nodes in the cluster
according to the number of images loaded in the cluster. This
could be accomplished by (2), and it is written in Python
programing language.

Ncompute = math.ceil ((Nimages * Tseq) / Ncpu-act) (2)

where:

• Ncompute – number of required computing nodes in the
cluster;

• Nimages – number of images per seconds that could be
loaded in sequenced order to the cluster system;

• Tseq – time to process one segment of arrived images
where one image has reserved one CPU core;

• Ncpu-act – number of CPU cores on Raspberry Pi that are
reserved for processing from head node.

Also, in (2), the math function ceil() from Python is used to
round the result to the higher integer value. So, if the calculated
value exceeds any integer value, the result will be the next
integer value. This means that one additional computing node
is needed regardless of the value after the decimal point.

Testing with the cluster of one head and three computing
nodes gave results shown in Fig. 10 and also represent pattern
of values from which further usage of cluster in image
processing could be planned. Images from one location are not
required for sending to a remote computer. Users could be
satisfied with image analysis on local cluster consisting of
Raspberry Pi if execution times were acceptable. Calculation of
required number of computing nodes in a cluster is a necessary
step to form an appropriate cluster that could respond to user
needs in terms of active image processing.

International Journal of Electrical Engineering and Computing
Vol. 2, No. 2 (2018)

89

VII. EDUCATIONAL ASPECTS OF THE CLUSTER

Since the Raspberry Pi cluster was created within a research
conducted on the master studies, the further research should
also emphasize the educational aspect of the cluster. The
students of the undergraduate studies of Computer Engineering
are engaged in the Parallel Computer Systems course in which
the realized cluster can be used in many ways. First of all, the
students can get to know the basic concepts of loosely coupled
computer systems based on message passing interfaces. The
realized cluster enables students to gain additional knowledge
regarding the setting of the local computer network parameters.
Also, by using the cluster of four Raspberry Pi modules as a
starting point, the students can get to know the ways of the
cluster realization based on larger number of nodes.

The second important aspect of using the cluster in
educational purposes is acknowledgement of MPI concept and
possibilities of its deployment on Raspberry Pi based cluster.
This includes the installation of MPI libraries in order to obtain
the proper environment for the execution of parallel
applications.

The developed cluster is a part of the local computer
network in the Computer Science Laboratory and represents
the fair platform for the development of parallel programs. The
possibilities of the cluster were first benchmarked on the matrix
multiplications examples, and later was used in image
processing.

Starting with the fact that Raspberry Pi operating system
has built-in Python interpreter, this programming language was
used for the development of parallel programs. In this way, the
students can get closer inspection to the Python programming
language. Likewise, the students can gain the experience in
using Python for development of parallel applications, based on
the MPI concepts on the Raspberry Pi cluster.

VIII. CONCLUSION

Computer clusters designed for parallel computations have
gained additional significance by the emergence of computer
modules, such as Raspberry Pi and BeagleBone. Good process
and network characteristics of these modules allow clusters
with a large number of nodes to be formed based on them. This
article presents the MPI Cluster, which consists of four nodes
based on the Raspberry Pi 3 module and its use for parallel
image processing.

Through the conducted research, within which the shown
cluster was formed, the aspects of using the Raspberry Pi 3
module for this purpose, the installations of the required
software, and the methods and requirements for configuring
nodes within the cluster were examined. Also, the experience
has been gained in terms of the knowledge in programming
such a computer using the MPI concept.

The realized research has shown that the construction of
this cluster helped students of master studies in acquiring
additional knowledge in the field of parallel processing.
Consequently, the developed cluster, as well as the future
research on this plan, will provide a good basis for the
education of students in the field of parallel processing.

Starting from the assumption that a developed computer
cluster can be used for image processing, an application has
been developed in which the number of wheat grains is counted

in a photographed sample. Parallel computation using the
Raspberry Pi cluster was carried out through an application
written in the Python programming language and the MPI
concept. In the development of the application, two algorithms
were applied – Watershed and Edge Detection. The application
speed was tested first on one Raspberry Pi 3 module, then on
the Raspberry Pi 3 cluster of four nodes. During the testing, the
processing was carried out on 3, 6, and 9 images with the
engagement of 1, 2, or 3 processor cores.

As can be seen from Table I – IV and Fig. 10, the
processing time on one Raspberry Pi 3 module is proportional
to the number of processed images for both algorithms. On the
other hand, cluster processing time is approximately the same
for both algorithms and in the processing of different number
of images.

It is planned that, as a part of further research, a cluster with
a large number of Raspberry Pi nodes would be formed. It is
also planned to use the programming of a more complex
algorithm to use such a cluster and MPI concept, and to
conduct an appropriate comparative analysis in relation to the
use of the sequential program.

Also, it will be interesting for further research to compare
performance times and other performance factors for different
platforms in which software applications for the same
algorithms would be executed. The further research would
imply the use of different programming languages for the
development of parallel applications and the implementation of
an appropriate comparative analysis of the results obtained.

ACKNOWLEDGEMENT

The paper presents the results of the research within the
Hardware – Software Co-Design course at the Master studies in
the field of Computer Engineering at the University of
Kragujevac, Faculty of Technical Sciences in Čačak. Financial
support to the research was realized through the TR32043
project funded by the Ministry of Education, Science, and
Technological Development of the Republic of Serbia.

REFERENCES

[1] Z. J. Czech, “Introduction to parallel computing,” 1st Edition,
Cambridge University Press, 2017.

[2] C. S. Yeo, et al., “Cluster computing: High – performance, high –
availability and high – throughput processing on a network of
computers", In Zomaya, A. Y. (eds) Handbook of Nature – Inspired and
Innovative Computing, Springer, Boston, MA, pp. 521 – 551, 2006.

[3] J. Levesque, and G. Wagenbreth, “High performance computing:
programming and applications,” 1st edition, Chapman and Hall/CRC,
2010.

[4] S. Bova, et al. “Parallel programming with message and directives”,
Computing in Science and Engineering, vol. 3, no. 5, pp. 22 – 37,
September/October 2001.

[5] N. Desai, R. Bradshaw, A. Lusk, and E. Lusk, “MPI Cluster System
Software”, Proceedings of 11th European PVM/MPI User’s Group
Meeting Budapest, Hungary, pp. 277 – 286, September 19 – 22, 2004.

[6] A. Geist, et al., “PVM: Parallel virtual machine: A user's guide and
tutorial for network parallel computing,” The MIT Press, 1994.

[7] A. Robinson, M. Cook, „Raspberry Pi Projects,” 1st Edition, Wiley,
2013.

[8] D. Molloy, “Exploring BeagleBone: Tools and techniques for building
with embedded Linux,” 1st Edition, Wiley, 2014.

[9] P. Abrahamsson et al., “Affordable and energy-efficient cloud
computing clusters: The Bolzano Raspberry Pi cloud cluster
experiment,” 2013 IEEE 5th International Conference on Cloud

Dušan Marković et al.

90

Computing Technology and Science (CloudCom), vol. 2, pp. 170-175,
2013.

[10] S. J. Cox et al., “Iridis-pi: a low-cost, compact demonstration cluster,”
Cluster Computing, vol. 17, no. 2, pp. 349-358, 2014.

[11] J. Kiepert, “Creating a Raspberry Pi-based Beowulf cluster,” Boise State
University, pp. 1-17, 2013.

[12] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The
Glasgow Raspberry Pi cloud: A scale model for cloud computing
infrastructures,” 2013 IEEE 33rd International Conference on
Distributed Computing Systems Workshops (ICDCSW), IEEE, pp. 108-
112, 2013.

[13] C. Pahl, S. Helmer, L. Miori, J. Sanin, and B. Lee, “A container-based
edge cloud PaaS architecture based on Raspberry Pi clusters,” IEEE
International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW), pp. 117-124, 2016.

[14] M. d’Amore, R. Baggio, and E. Valdani. “A practical approach to big
data in tourism: a low cost Raspberry Pi cluster,” Information and
Communication Technologies in Tourism 2015, Springer, Cham, pp.
169-181, 2015.

[15] S. Djanali, F. X. Arunanto, B. A. Pratomo, H. Studiawan, and S. G.
Nugraha, “SQL injection detection and prevention system with
Raspberry Pi honeypot cluster for trapping attacker,” 2014 International
Symposium on Technology Management and Emerging Technologies
(ISTMET), pp. 163-166, 2014.

[16] A. Ashari, and M. Riasetiawan, “High performance computing on
cluster and multicore architecture,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 13, no. 4,
pp. 1408-1413, 2015.

[17] M. F. Cloutier, P. Chad, and V. M. Weaver, “A Raspberry Pi cluster
instrumented for fine-grained power measurement,” Electronics, vol. 5,
no. 4, p. 61, 2016.

[18] A. M. Pfalzgraf and J. A. Driscoll, “A low-cost computer cluster for
high-performance computing education,” IEEE International Conference
on Electro/Information Technology, Milwaukee, WI, pp. 362-366, 2014.

[19] A. Sforzin, F. G. Mármol, M. Conti, and J. M. Bohli, “RPiDS:
Raspberry Pi IDS—A fruitful Intrusion Detection System for IoT,” In
Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE
Conferences, pp. 440-448, 2016.

[20] P. Velthuis, “Small data center using Raspberry Pi 2 for video
streaming,” Proc. 23th Twente Student Conf. IT, 2015.

[21] E. Wilcox, P. Jhunjhunwala, K. Gopavaram, and J. Herrera, “Pi-crust: a
Raspberry Pi cluster implementation,” Technical report, Texas A&M
University, 2015.

[22] G. Tang, et al., “EMAN2: An extensible image processing suite for
electron microscopy,” Journal of Structural Biology, vol. 157, pp. 38-46,
2007.

[23] S. Schlüter, A. Sheppard, K. Brown, and D. Wildenschild, “Image
processing of multiphase images obtained via X-ray microtomography:
A review,” Water Resour. Res. vol. 50, pp. 3615-3639, 2014.

[24] Q. Dai, J. H. Cheng, D.-W. Sun and X. A. Zeng, “Advances in feature
selection methods for hyperspectral image processing in food industry
applications: A Review,” Critical Reviews in Food Science and
Nutrition, vol. 55, no. 10, pp. 1368-1382, 2015.

[25] E. Hamuda, M. Glavin, and E. Jones, “A survey of image processing
techniques for plant extraction and segmentation in the field,”
Computers and Electronics in Agriculture, vol. 125, pp. 184-199, 2016.

[26] M. Mora, et al., “Automated computation of leaf area index from fruit
trees using improved image processing algorithms applied to canopy
cover digital photography,” Computers and Electronics in Agriculture,
vol. 123, pp. 195-202, 2016.

[27] Raspberry Pi 3 Model B, available at:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (last
accessed on: November 2018)

[28] K. Iyer, “Learn to build your own supercomputer with Raspberry Pi 3
cluster”, Post on TechWorm, 2018.

[29] A. K. Dennis, “Raspberry Pi super cluster”, Packt Publishing, 2013.

[30] C. R. Morrison, “Build supercomputers with Raspberry Pi 3”, Packt
Publishing – ebooks Account, 2017.

[31] W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: Portable parallel
programming with the message – passing – interface,” 3rd Edition, The
MIT Press, 2014.

[32] R. Golden, “Raspberry Pi Networking Cookbook,” Packt Publishing,
2013.

[33] V. Govindaraj, “Parallel programming in Raspberry Pi cluster,” A
Design Project Report, School of Electrical and Computer Engineering,
Cornel University, 2016.

[34] G. Dorr et al, “Introduction to parallel processing with eight node
Raspberry Pi cluster”, Midwest Instruction and Computing Symposium
(MICS), The University of Wisconsin – La Crosse in La Crosse, 7 – 8
April 2017.

[35] S. van der Walt, et al. “Scikit-image: image processing in Python,” PeerJ
2:e453, 2014.

Dušan Marković was born in Serbia in 1982.
He received Dipl. Ing. degree at the University
of Kragujevac, Faculty of Technical Sciences in
2006. He is currently a PhD student in the field
of Computer Science at the Faculty of Technical
Sciences in Čačak. His research interests include
distributed computing, IoT, and Cloud-Fog
computing.

Dejan Vujičić was born in Čačak, Serbia in
1988. He received his B.Sc. and M.Sc. in
Computer Science at the University of
Kragujevac, Faculty of Technical Sciences in
2011 and 2012, respectively. He also received
M.Sc. in Astronomy in 2016, at the Faculty of
Mathematics, University of Belgrade. He is
currently a PhD student in the field of
Computer Science, at the Faculty of Technical
Sciences in Čačak, where he is employed as a

teaching assistant since 2014. His research interests include
computer architecture, parallel computing, wireless sensor
networks, neural networks, and applications of computer science
in astronomy.

Dragana Mitrović was born in Belgrade,
Serbia in 1994. She received B.Sc. and M.Sc.
in Computer Science at the University of
Kragujevac, Faculty of Technical Sciences in
2017 and 2018, respectively. She is now
employed by Riitech Solutions in Čačak.
Raspberry Pi Cluster presented in this article
has been developed within her master thesis.

The areas of her interest are parallel programming, WEB and
mobile computing.

Siniša Ranđić was born in Čačak, Serbia in
1953. He received the Dipl. Ing. and M.Sc.
degree at Faculty of Electrical Engineering
University of Belgrade 1977, 1984 respectively.
PhD degree received from University of
Kragujevac, Technical faculty in Čačak, in
1999. Since 2018, he is a retired professor. His
research interests include computer architecture,
operating systems, parallel processing and

design of VLSI circuits. He has more than 40 years of professional
experience in the field of computer system design.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

