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Abstract— Accurate estimation of the state of health and remaining useful life of lithium-ion batteries is essential for ensuring the 

reliability, safety and longevity of electric vehicles, stationary storage systems and portable electronics. Traditional approaches based 

on electrochemical diagnostics, equivalent circuit models and reduced-order physics-based methods provide valuable mechanistic 

insights but face significant limitations under dynamic real-world operating conditions. Recent advances in artificial intelligence have 

transformed battery diagnostics by enabling data-driven extraction of degradation-sensitive features from voltage, current and 

temperature measurements. Machine learning algorithms such as random forests and support vector regression demonstrate strong 

state of health estimation accuracy when combined with engineered features, while deep learning models, including convolutional 

neural networks, long short-term memory, convolution long short-term memory and attention-based architectures, achieve state-of-

the-art performance by learning nonlinear temporal patterns directly from raw time-series data. Hybrid physics-informed neural 

networks further enhance interpretability and generalization by embedding electrochemical constraints into model architectures. In 

addition to supervised learning, reinforcement learning has emerged as a promising method for adaptive battery management, 

enabling real-time optimization of charging strategies, thermal control and power allocation to minimize degradation and extend 

battery lifetime. When integrated into digital twin frameworks, artificial intelligence models support continuous, real-time state of 

health/remaining useful life tracking and predictive maintenance across large battery fleets. Despite these advances, challenges remain 

in data availability, domain shift, model interpretability, computational constraints and the absence of standardized validation 

protocols. Future research will focus on physics-informed hybrid artificial intelligence, transfer learning for cross-chemistry 

generalization, federated learning for privacy-preserving fleet deployment and standardized benchmarking frameworks. Together, 

these developments signal the emergence of next-generation intelligent battery management systems that combine accurate health 

estimation with adaptive, degradation-aware control. 

Keywords-artificial inteligence; lithium-ion batteries; state of health; data-driven prognostics;  

I.  INTRODUCTION 

Lithium-ion batteries have become the dominant energy 
storage technology for electric vehicles (EV), grid-scale storage 
systems and portable electronics due to their high energy 
density, long cycle life and decreasing cost per kilowatt-hour. 
Ensuring their safe and efficient operation, however, requires 
accurate monitoring of internal states such as state of charge 
(SOC), state of health (SOH), state of energy (SOE), state of 
power (SOP), state of temperature (SOT), state of safety (SOS) 
and remaining useful life (RUL), of which SOH monitoring is 
critical to battery management for balancing the trade-off 
between maximizing system performance and minimizing 
battery degradation [1], [2]. Traditional diagnostic and modeling 
approaches, including incremental capacity analysis, differential 
voltage analysis, electrochemical impedance spectroscopy and 
equivalent circuit or electrochemical models, provide essential 

mechanistic insights but face significant challenges when 
deployed under dynamic real-world conditions characterized by 
fluctuating temperatures, irregular load profiles and partial 
cycling [3], [4]. These conditions cause degradation 
mechanisms such as solid electrolyte interphase (SEI) growth, 
lithium plating and electrode microstructural changes to evolve 
in nonlinear and path-dependent ways that traditional models 
often struggle to capture. 

The increasing availability of large-scale cycling datasets 
and operational telemetry from electric vehicles has accelerated 
the adoption of artificial intelligence (AI) in battery diagnostics. 
Machine learning (ML) techniques can provide a viable 
alternative and a useful tool for modelling battery behavior [5]. 
These methods, such as random forests or support vector 
regression, have demonstrated strong performance in capacity 
fade and SOH estimation when applied to engineered features 
extracted from selected charge–discharge intervals [3]. In 
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addition to this, auto regressor (AR), and Gaussian process 
regression (GPR) act as common methods to estimate SOH and 
RUL [6]. Deep learning (DL) methods, including feed-forward 
neural networks (FNNs), convolutional neural networks 
(CNNs), long short-term memory (LSTM) networks, temporal 
convolutional networks (TCNs) and attention-based 
architectures, further advance this capability by autonomously 
learning degradation-sensitive temporal patterns directly from 
raw voltage, current and temperature time-series data, achieving 
sub-percent prediction errors in studies [6]-[9]. Recent studies 
highlighted that LSTM, FNN, and CNN neural network 
algorithms achieved the best performance, with a mean absolute 
percentage error of around 0.5%, compared to about 1.5% for 
FNN and 2% for CNN networks [10]. 

Hybrid approaches that integrate physics-based constraints 
into neural architectures, commonly known as physics-informed 
neural networks (PINNs), provide an additional layer of 
interpretability and generalization by embedding 
electrochemical principles into the learning process [11]. These 
models address limitations associated with black-box DL 
methods and improve robustness under sparse or noisy data 
conditions. 

In parallel with advances in supervised learning, 
reinforcement learning (RL) has emerged as a powerful 
complementary technology for adaptive battery management. 
Unlike supervised ML/DL models that estimate SOH or RUL 
from historical data, RL agents learn optimal control strategies, 
such as fast-charging protocols, thermal management policies or 
power allocation schemes, by interacting with an environment 
and maximizing long-term performance and safety objectives. 
Recent work demonstrates that deep RL frameworks can 
significantly reduce battery aging during fast charging, suppress 
thermal stress and optimize charge–discharge schedules more 
effectively than conventional rule-based or constant-
current/constant-voltage (CC/CV) methods [12], [13], [19]. 
When combined with digital twin (DT) simulators, RL agents 
can be trained safely at scale, enabling real-time, degradation-
aware decision-making in modern battery management systems. 

Despite significant progress, AI-driven battery health 
estimation still faces notable challenges, including data scarcity, 
poor generalization across chemistries and manufacturers, 
limited interpretability of deep models, computational 
constraints in onboard battery management system (BMS) 
hardware and the lack of standardized validation protocols [4], 
[11]. Addressing these issues is essential for the widespread 
deployment of AI-enhanced diagnostic and control algorithms 
in safety-critical applications such as electric vehicles. 

This work provides a comprehensive review of traditional, 
machine learning, deep learning, physics-informed and 
reinforcement learning methodologies for SOH and RUL 
estimation, highlighting their strengths, limitations and potential 
integration into next-generation intelligent battery management 
systems. 

II. BATTERY STATE OF HEALTH ESTIMATION 

State of Health estimation refers to the process of quantifying 
the degradation level of a battery relative to its nominal, fresh 
condition, and is defined as the current capacity or internal 
resistance of the battery compared with that of a new one [28], 
[29]. It reflects the battery’s ability to store and deliver energy 
compared to its original performance and is most commonly 

expressed as a normalized metric, such as remaining capacity or 
health percentage. SOH is a latent variable, meaning it cannot be 
measured directly and must be inferred from observable 
electrical, thermal, and operational signals. The general SOH 
estimation process, independent of the specific estimation 
technique, is illustrated in Fig. 1. 

In practice, SOH estimation begins with a battery operating 
under real-world conditions, including charging, discharging, 
and exposure to varying temperatures and load profiles. These 
operating conditions induce measurable responses in the battery, 
most notably voltage, current, temperature, and time- or cycle-
related data. The quality and availability of these measurements 
are critical, as they form the foundation for any health 
assessment strategy. 

The measured signals are subsequently processed to remove 
noise, compensate for sensor inaccuracies, and align data across 
different operating regimes. From these processed signals, 
diagnostic indicators are extracted that are sensitive to internal 
degradation mechanisms. Such indicators may represent 
changes in capacity, internal resistance, voltage response 
characteristics, or energy efficiency, each of which correlates 
with aging phenomena such as loss of lithium inventory, growth 
of internal resistive layers, or active material degradation. 

The core of SOH estimation lies in interpreting these 
diagnostic indicators using an estimation framework or model. 
Depending on the chosen methodology, this framework may 
rely on empirical relationships, equivalent circuit 
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Figure 1. Battery SOH estimation process 

https://www.sciencedirect.com/topics/engineering/regressors
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representations, electrochemical principles, or data-driven 
mappings. Regardless of the approach, the objective is to 
establish a reliable relationship between observable indicators 
and the underlying degradation state of the battery. 

The output of the estimation process is the SOH value, 
typically expressed as a percentage of the nominal capacity or as 
a normalized health index. This estimated SOH provides 
actionable information for battery monitoring, maintenance 
planning, safety assessment, and lifecycle management. In 
battery management systems, SOH estimates are essential for 
preventing overuse of degraded cells, enabling predictive 
maintenance, and ensuring safe and efficient operation 
throughout the battery’s service life. 

III. TRADITIONAL BATTERY STATE ASSESSMENT METHODS 

Traditional methodologies for evaluating the internal state 
and degradation level of lithium-ion batteries form the historical 
and theoretical basis on which modern diagnostic and prognostic 
techniques are built. These approaches include experimental 
diagnostic procedures, model-based estimation methods and 
hybrid strategies that combine measurement-driven indicators 
with simplified physics. Although they are valuable for physical 
interpretability and controlled laboratory analysis, traditional 
methods encounter limitations when applied to dynamic, real-
world operating environments such as electric vehicles or grid-
interactive storage systems. This section reviews the main 
categories of traditional SOH estimation techniques and their 
role in contemporary battery research. 

A. Experimental and Diagnostic Methods 

Diagnostic techniques such as open-circuit voltage (OCV) 
analysis, incremental capacity analysis (ICA), differential 
voltage analysis (DVA), and electrochemical impedance 
spectroscopy (EIS) have long been used to extract internal health 
information from lithium-ion cells. ICA and DVA are 
particularly sensitive to electrochemical aging because they 
quantify characteristic peak shifts in voltage–capacity 
derivatives that correspond to loss of active material, changes in 
reaction overpotential and SEI layer growth. These analyses 
require slow, highly controlled charge–discharge cycles, making 
them excellent for laboratory studies of degradation mechanisms 
but unsuitable for high-power or transient operating regimes 
typically encountered in electric vehicle use cases. 

Recent literature highlights that despite their impracticality 
for real-time onboard estimation, ICA and DVA remain 
fundamental tools for generating high-quality labels for machine 
learning datasets and for validating the interpretability of AI-
based feature extraction pipelines [3], [14]. Similarly, EIS offers 
unparalleled sensitivity to early-stage degradation by measuring 
frequency-dependent resistance components but requires 
specialized instrumentation and cannot be implemented during 
normal EV driving. In practice, these techniques serve as offline 
diagnostic benchmarks rather than operational tools for online 
SOH estimation. 

B. Model-Based Estimation Methods 

Model-based approaches constitute the second major 
category of traditional SOH estimation techniques. The model-
based method commonly consists of two steps [34]. The first 
step is to establish a degradation model to simulate the aging of 
the battery, in which, some parameters of the model indicate the 

SOH of the battery. These models mainly include 
Electrochemical Model (EM) and Equivalent Circuit Model 
(ECM). The second step is to update the parameters of the model 
to obtain the current SOH of the battery. Equivalent circuit 
models, such as Thevenin and high-order RC models, 
approximate a battery’s dynamic electrical response using 
lumped resistive-capacitive networks. ECMs support real-time 
estimation through Kalman filtering [27] and remain widely 
used in commercial BMS because of their simplicity, low 
computational cost and ease of parameter fitting. Nevertheless, 
ECM parameters drift significantly as the battery ages, and these 
models have difficulty capturing nonlinear or path-dependent 
degradation phenomena without frequent re-identification. 

Electrochemical models, such as the Doyle-Fuller-Newman 
(DFN) model and its reduced-order variants, provide a more 
physically grounded representation. They encode ion diffusion, 
charge-transfer kinetics, electrolyte transport and 
thermodynamic equilibria, enabling high-fidelity simulation of 
mechanisms such as lithium plating and SEI layer formation. 
However, the need to solve coupled partial differential equations 
makes DFN models computationally expensive and 
incompatible with embedded microcontrollers found in BMS. 
Even reduced-order implementations require extensive 
parameter calibration, limiting their practicality in fielded 
systems [4]. 

Despite their limitations, both ECM and DFN models 
continue to play critical roles in research. ECMs support fast 
prototyping of estimation algorithms, while electrochemical 
models provide physically interpretable ground truth for 
validating AI-driven frameworks and hybrid physics-informed 
architectures. 

C. Limitations and Role in Modern Battery Analytics 

Although traditional methods remain indispensable in 
controlled laboratory settings, they face intrinsic limitations in 
real-world battery prognostics. Their dependence on highly 
regulated cycling conditions prevents widespread deployment in 
systems where load patterns change rapidly, temperatures 
oscillate unpredictably and full charge–discharge cycles rarely 
occur. Additionally, traditional approaches lack mechanisms for 
handling uncertainty, noise and variability across chemistries, 
manufacturers and application domains. 

Recent surveys on SOH estimation emphasize that 
traditional methods now serve primarily as benchmarking and 
calibration tools rather than operational diagnostic systems [4], 
[14]. In particular, datasets derived from ICA, DVA and EIS 
measurements are increasingly used to label and validate 
machine learning models providing a bridge between physically 
interpretable diagnostics and automated AI-driven estimation 
pipelines [3], [15]. As machine learning and physics-informed 
neural networks continue to advance, traditional methods 
maintain their relevance by offering physically meaningful 
features, validation frameworks and mechanistic insights that 
purely data-driven systems cannot easily replicate. Table 1. 
gives comparative analysis of traditional lithium-ion battery 
state assessment methods. 
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IV. AI METHODS FOR BATTERY SOH ESTIMATION 

Conventional SOH estimation techniques, often based on 
complex electrochemical models or extensive laboratory testing, 
tend to require a large number of measurements, advanced 
instrumentation, and high computational cost [33].  Artificial 
intelligence has emerged as a transformative tool for estimating 
the state of health of lithium-ion batteries, addressing many of 
the limitations inherent in traditional diagnostic techniques. 
Unlike conventional methods that rely on controlled laboratory 
conditions, predefined physical models or handcrafted features, 
AI-based approaches can learn complex nonlinear degradation 
patterns directly from operational data. Through machine 
learning, deep learning, physics-informed modeling and, more 
recently, reinforcement learning, AI enables accurate, scalable 
and real-time prediction of battery aging under diverse and 
highly dynamic conditions. These methods leverage large 
datasets of voltage, current, temperature and cycling histories to 

infer degradation mechanisms, model long-term capacity fade 
and internal resistance growth, and provide robust estimates 
even in the presence of noise, partial cycling or irregular load 
profiles. AI-based SOH estimation therefore represents a key 
advancement toward next-generation battery management 
systems capable of adaptive diagnostics, predictive maintenance 
and optimized operational control. 

A. Rationale for Data-Driven Approaches 

The increasing complexity of degradation phenomena in 
lithium-ion batteries, especially under real-world usage 
conditions characterized by variable loads, partial cycles, 
fluctuating temperatures and heterogeneous usage patterns, 
challenges the applicability of traditional model-based methods. 
A data-driven SOH estimation model functions on mass data 
without necessary dependence on the battery internal 
degradation mechanism [28]. Data-driven approaches, 
leveraging machine learning or deep learning, offer a flexible 

TABLE I.  COMPARATIVE ANALYSIS OF TRADITIONAL LITHIUM-ION BATTERY STATE ASSESSMENT METHODS 

Method Principle/Measurement Main Advantages Main Limitations Typical Use Case 

Open-Circuit 

Voltage and 

Relaxation 

Measures cell voltage at 
(near) equilibrium to 

infer SOC/SOH from 

voltage–capacity curves 
and their shift over 

aging; 

Simple to implement; 
no special hardware; 

good for approximate 

capacity fade 
assessment under 

controlled conditions; 

Requires long rest times 
to reach equilibrium; 

inaccurate under 

dynamic EV conditions; 
sensitive to temperature 

and hysteresis; 

Laboratory 

characterization; 

calibration of 

SOC/SOH models; 

Incremental 

Capacity 

Analysis 

Uses derivative dQ/dV 

during slow 

charge/discharge; shifts 
and distortion of IC 

peaks correspond to loss 

of active material, SEI 

growth, etc. 

Very sensitive to aging; 
can distinguish 

different degradation 

modes; useful for SOH 
tracking in controlled 

tests; 

Requires slow, low-
noise cycling; not 

directly applicable in 

highly dynamic EV 
profiles; needs high-

resolution data; 

Aging mechanism 

identification; 
generating 

labels/features for data-

driven SOH models; 

Differential 

Voltage Analysis 

Uses derivative dV/dQ; 

analyzes changes in 

voltage–capacity slope to 
track electrode and 

electrolyte changes; 

Provides 
complementary 

information to ICA; 

effective for identifying 
changes in 

cathode/anode 

behavior; 

Needs stable cycling; 
sensitive to 

measurement noise; less 

suited for online BMS; 

Detailed lab aging 
studies; feature 

extraction for ML/DL 

models; 

Direct Capacity 

Measurement 

(Full Charge–

Discharge Test) 

Measures usable capacity 

by cycling between 

defined voltage limits at 

low C-rate; 

Direct, intuitive SOH 

measure; reference 

method for capacity 

fade; 

Time-consuming; 

impractical in EV field 
operation; accelerates 

aging if done 

frequently; 

Benchmarking aging 
tests; ground truth for 

SOH label generation; 

Electrochemical 

Impedance 

Spectroscopy 

Applies small AC 

perturbation over a range 
of frequencies; analyzes 

complex impedance 

response (Nyquist/Bode 

plots); 

Highly sensitive to 

early degradation; can 
separate ohmic, charge-

transfer and diffusion 

contributions; rich 

diagnostic information; 

Requires specialized 

equipment; difficult to 

apply during normal 
driving; sensitive to 

temperature and SOC; 

Laboratory diagnostics; 

parameter identification 

for ECM/DFN models; 
constructing EIS-based 

SOH indicators; 

Equivalent 

Circuit Models 

with Parameter 

Identification 

Fits simple RC or 

Thevenin circuits to 

dynamic voltage/current 
response; tracks changes 

in internal resistance and 

time constants; 

Low computational 

cost; suitable for 
embedded BMS; 

integrates naturally 

with Kalman filtering 
for SOC/SOH 

estimation; 

Parameters drift with 

aging and temperature; 
limited ability to 

capture complex 

nonlinear degradation; 
requires frequent 

recalibration; 

On-board SOC/SOH 

estimation in 
commercial BMS; fast 

prototyping; 

Physics-Based 

Electrochemical 

Models (DFN 

and Reduced-

Order) 

Solve coupled PDEs 

describing ion diffusion, 

charge transfer and 
transport in 

electrodes/electrolyte; 

track internal states and 

degradation mechanisms; 

High physical fidelity; 
can simulate specific 

degradation 

mechanisms (SEI, 
lithium plating, etc.); 

useful as virtual lab; 

Computationally 
intensive; demanding 

parameterization; not 

directly suitable for 
real-time embedded 

BMS; 

High-fidelity 

simulation; digital-twin 
cores; generation of 

synthetic training data 

for AI models; 
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alternative by learning empirical mappings between observable 
telemetry (voltage, current, temperature, cycle count) and 
internal health indicators, thereby capturing nonlinear, path-
dependent effects that are difficult to model analytically [4], [7], 
[16]. Moreover, as extensive aging datasets become more 
available, either from laboratory cycling or from fleets of EVs, 
data-driven algorithms become increasingly viable for robust 
SOH estimation at scale. In [30], a model that continually learn 
new aging information while maintaining the ability to estimate 
the health of batteries that have similar aging conditions to the 
learned information before, was developed. 

A recent comprehensive review demonstrates that DL-based 
methods consistently outperform classical ML and model-based 
approaches in SOH estimation tasks, especially when large, 
diverse datasets are available, and when models are trained to 
operate under variable charging/discharging regimes [7]. The 
flexibility of data-driven models allows them to adapt to 
unknown or complex degradation modes, such as combined 
capacity fade, impedance rise, or intermittent lithium plating, 
which vary across cells and usage histories.  

B. Machine Learning Methods 

Traditional ML methods remain relevant in SOH estimation 
due to their relatively small computational footprint, 
interpretability, and requirement for less data. For instance, in 
[3], feature extraction from a selected voltage interval during 
charging, derived using incremental capacity analysis, was used 
as input for random forest regression (RFR) or support vector 
regression (SVR), resulting in accurate SOH predictions with 
limited data. This approach reduces the data requirement 
compared to full-cycle based methods and demonstrates that 
carefully engineered features can yield effective capacity fade 
estimates even under constrained data conditions [3]. ML 
methods can model nonlinear relationships and temporal 
degradation patterns directly from cycling data [35]. 

Further, hybrid feature-engineering pipelines combining 
temporal features, temperature history, internal resistance 
estimates and statistical descriptors of voltage/current curves 
have been shown effective in ensemble regressors such as 
gradient-boosted trees or random forests. These models preserve 
interpretability of feature importance metrics, facilitating insight 
into which operational patterns or signal characteristics most 
strongly correlate with degradation, a property highly valued in 
industrial BMS design. 

C. Deep Learning Architectures: From Time-Series Learning 

to Hybrid Models 

Deep learning brings a paradigm shift by enabling end-to-
end learning directly from raw or minimally processed time-
series data collected during battery operation, without the need 
for handcrafted features. For example, a recent systematic 
review [7] shows that architectures including CNNs, recurrent 
neural networks (RNNs), TCNs and transformer-based models 
have been successfully employed for SOH estimation of lithium-
ion batteries in EV contexts, achieving high accuracy and 
robustness across varying datasets.  

One notable recent contribution proposed a hybrid DL model 
that merges convolutional feature extraction, Kolmogorov-
Arnold network layers and bidirectional LSTM (BiLSTM), 
using incremental energy features derived from charging and 
discharging data to estimate SOH with high precision [17]. This 

hybrid approach leverages the ability of CNNs to detect 
localized features, the flexibility of Kolmogorov-Arnold 
mappings for nonlinear transformation, and the temporal 
modeling strength of LSTM networks, enabling accurate SOH 
prediction even under complex and irregular cycling profiles 
[17]. 

Another work demonstrated that deep learning frameworks 
remain effective under real-world constraints by exploiting 
short-time working condition windows instead of full-cycle 
data, thereby reducing the data collection burden and 
computational cost [18]. This development is especially relevant 
for fleet-level deployment or real-time BMS, where full-cycle 
capture is impractical. 

D. Challenges and Considerations in AI-Based SOH 

Estimation 

Despite the advantages, AI-based methods for SOH 
estimation come with challenges that warrant careful 
consideration. First, data quality and representativeness remain 
critical: models trained on laboratory cycling data may not 
generalize to field conditions, where load profiles, temperature 
fluctuations and user behaviors differ substantially. Second, 
deep learning models often require large amounts of labeled 
aging data for training; obtaining such data is costly and time-
consuming, especially for full lifetime degradation trajectories. 
Third, interpretability remains a concern because black-box DL 
models may provide accurate predictions, but without 
explainable decision logic, their adoption in safety-critical BMS 
systems can be limited. 

Furthermore, hybrid models combining physics-based 
knowledge with data-driven learning are being explored to 
mitigate these issues, but integrating such constraints without 
sacrificing flexibility remains a complex task. The balance 
between generalization, interpretability, computational 
efficiency and reliability under unseen conditions defines the 
current frontier of AI-based battery diagnostics research. 

V. MACHINE LEARNING AND DEEP LEARNING MODELS 

FOR SOH AND RUL ESTIMATION 

Machine learning and deep learning have become central 
pillars of modern battery prognostics, offering powerful 
alternatives to traditional physics-based and feature-engineered 
methods for estimating the state of health and remaining useful 
life of lithium-ion batteries. ML techniques provide flexible, 
data-driven mappings between diagnostic features and 
degradation states, while DL architectures can learn hierarchical 
temporal and nonlinear patterns directly from raw voltage, 
current, and temperature signals. These models have 
demonstrated superior performance under diverse operating 
conditions, including dynamic load profiles, partial cycling and 
variable temperatures, scenarios where conventional approaches 
typically underperform. With advancements such as attention 
mechanisms, hybrid CNN-LSTM frameworks, physics-
informed networks and reinforcement learning–assisted 
management strategies, AI-driven battery diagnostics are 
rapidly evolving toward more accurate, interpretable and 
deployable solutions for next-generation battery management 
systems. 
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A. Overview of Machine Learning Approaches 

Machine learning has become a central component of battery 
state of health estimation because it offers a practical balance 
between accuracy, computational efficiency and transparency. 
Instead of depending on complex electrochemical formulations, 
ML methods learn empirical relationships between voltage, 
current, temperature and cycling behavior and the underlying 
degradation mechanisms. This learning capability makes ML 
particularly useful for real-world conditions where batteries 
operate under irregular load profiles, partial cycles and 
fluctuating temperatures. Even relatively simple ML algorithms, 
such as RFR and SVR, have demonstrated strong predictive 
capability when supplied with informative engineered features, 
such as incremental capacity or differential voltage descriptors 
extracted from selected charging windows [3]. 

In addition to their computational efficiency, ML models 
also offer interpretability through feature-importance analysis, 
allowing engineers to identify specific operational patterns that 
contribute most to degradation. This makes ML suitable for 
integration into commercial battery management systems, where 
explainability and robust performance are essential. 

 

B. Deep Learning Architectures for SOH and RUL Prediction 

Deep learning extends the capabilities of ML by learning 
directly from raw time-series signals with minimal feature 
engineering. Architectures such as CNNs, LSTM networks and 
TCNs have shown superior performance over traditional ML 
methods due to their ability to model nonlinear dynamics and 
long-range temporal dependencies [7]. Recent hybrid models 
have further advanced the state of the art by combining CNNs, 
LSTMs and attention mechanisms, enabling networks to extract 
both fine-grained and long-term aging patterns. A prominent 
example is a CNN-LSTM-attention framework optimized 
through metaheuristic search, achieving sub-percent errors in 
SOH estimation under diverse cycling protocols [8]. Study [31] 
proposes a multi-modal deep learning feature extraction method 
based on charging data to extract comprehensive and effective 
health indicators that reflect the SOH of the battery for 
subsequent estimation. 

For RUL prediction, CNN-LSTM fusion architectures have 
also proved effective in learning both local degradation features 
and global capacity fade trends, outperforming classical 
prognostic methods under non-uniform operating conditions [9]. 
These advances highlight the ability of DL models to model 
complex degradation trajectories using high-dimensional, noisy 
and non-stationary data. 

TABLE II.  COMPARISON OF PHYSICS-BASED, MACHINE LEARNING, DEEP LEARNING, HYBRID AND REINFORCEMENT LEARNING 

METHODS FOR BATTERY SOH/RUL ESTIMATION AND MANAGEMENT  

Method 

Category 
Model Characteristics Data Requirements Strengths Limitations 

Physics-Based 

Models 

Governed by 

electrochemical and 

thermodynamic 
equations; mechanistic 

modeling of SEI growth, 

diffusion, kinetics; 

Requires detailed 

parameterization; EIS, 
lab characterization; 

physical parameters; 

High interpretability; 

grounded in physics; 
good for simulation and 

diagnostics; 

Computationally 

intensive; parameter 

identification is difficult; 
limited performance in 

dynamic real-world 

operation; 

Machine 

Learning 

RF, SVR, Gradient 

Boosting; uses 

engineered features 
(IC/DV, resistance 

features); 

Moderate-sized datasets; 

extracted diagnostic 

features; 

Interpretable, fast, low 
computational load; 

good for embedded 

BMS; 

Cannot fully capture 
nonlinear temporal 

aging; depends on hand-

crafted features; 

Deep Learning 
CNN, LSTM, GRU, 
ConvLSTM, attention 

mechanisms; 

Large raw time-series 
datasets (voltage, 

current, temperature); 

Learns nonlinear and 

temporal patterns 

directly; state-of-the-art 

SOH/RUL accuracy; 

Opaque (black box); 
needs large datasets; 

high computational cost; 

Hybrid Physics-

Informed Neural 

Networks 

Combines differential 
equations 

(electrochemical, 

thermal) with neural 

network structure; 

Requires both training 

data and physical 

constraints; 

Higher interpretability; 
better robustness; 

improved extrapolation 

beyond training 

distribution; 

Complex architecture 

and training process; 
domain knowledge 

needed; 

Domain 

Adaptation/ 

Transfer 

Learning Models 

Self-attention domain 
adaptation; cross-

chemistry and cross-

condition generalization; 

Shallow-cycle datasets; 

limited labeled data; 

Useful when data is 
scarce; generalizes 

across chemistries and 

labs; 

Requires careful 

calibration; still 

emerging; 

Reinforcement 

Learning 

DQN, PPO, Actor-Critic 

RL agents for charging, 

thermal control, and 

power management; 

Interaction with 

environment or digital 

twin; real-time 

operational data; 

Learns optimal long-

term charging/thermal 
policies; can reduce 

degradation; adaptive 

and real-time; 

Requires safe training 

environment; complex to 

validate for safety-

critical BMS; 

Digital Twin–

Integrated 

Models 

Hybrid DT + AI 
frameworks (ML/DL/RL 

+ physics simulators); 

Continuous real-time 
telemetry; physical 

models; 

Enables real-time 

SOH/RUL monitoring, 
predictive maintenance, 

control and anomaly 

detection; 

Requires cloud–edge 

integration and 

cybersecurity; model 

complexity; 

 



  

International Journal of Electrical Engineering and Computing  
Vol. 9, No. 2 (2025) 

 

95 
 

C. Recent Developments and Specialized DL Models 

Modern studies have expanded DL applications beyond 
single cells to include pack-level diagnostics, where cell 
inconsistency and differential aging complicate modeling tasks. 
Hybrid deep learning models have achieved high accuracy in 
SOH classification and estimation for series-connected cells, 
demonstrating their applicability in electric vehicle battery packs 
[19]. Furthermore, emerging research in domain adaptation and 
transfer learning shows that deep models can successfully adapt 
across chemistries, manufacturers or shallow-cycle datasets, 
thereby reducing the need for exhaustive long-life cycling 
experiments [20].  

D. Reinforcement Learning for Adaptive Battery Management 

In addition to supervised ML and DL methods used for SOH 
and RUL estimation, reinforcement learning has gained 
increasing attention for its ability to autonomously optimize 
battery operating conditions. Unlike supervised learning, which 
passively predicts battery health indicators, RL actively interacts 
with the environment and learns control policies that optimize 
long-term battery performance. This is particularly relevant for 
charging strategies, thermal regulation and power allocation, 
where the effects of operational decisions accumulate over time 
and influence degradation trajectories.  

Several studies demonstrate that deep reinforcement learning 
(DRL) algorithms, such as deep Q-networks (DQN) or proximal 
policy optimization (PPO), can design optimal charging 
protocols that significantly reduce capacity fade compared to 
conventional CC/CV) methods [21], [22]. RL-based policies 
adapt charging currents in real time based on feedback such as 
temperature, voltage gradients or estimated internal resistance, 
resulting in improved safety and reduced SEI-related aging. RL 
has also been integrated with battery thermal management 
systems, where agents learn to balance cooling effort, power 
demand and aging minimization under vehicle-like load 
fluctuations [23], [24]. 

A growing research direction involves combining RL with 
digital twin simulators to ensure safe, scalable training without 
risking physical assets. In these frameworks, the RL agent 
interacts with a high-fidelity electrochemical or data-driven 
virtual battery model, enabling millions of simulated charge and 
discharge cycles to be performed rapidly and safely. As digital 
twin infrastructure for batteries matures, RL-based management 
is expected to become a foundational component of next-
generation intelligent BMS architectures. 

TABLE III.  COMPARATIVE PERFORMANCE OF ML, DL AND RL MODELS FOR BATTERY SOH/RUL ESTIMATION AND 

MANAGEMENT 

Model Type Algorithm/Architecture Dataset/Conditions 
Performance Metrics 

(Reported) 
Key Outcome 

Machine Learning RF, SVR 

Selected charging 

voltage interval (12–

50% SOC) 

RMSE: <2.5% SOH 

(RF),  

MAE: ≈2% 

Feature-based ML 

achieves strong SOH 
estimation with limited 

data 

Deep Learning  

  

Hybrid CNN-LSTM-

Attention 

Benchmark cycling 

data; full & partial 

cycles 

RMSE: 0.87%,  

MAE: 0.82% 

Attention-based DL 
achieves sub-percent 

SOH estimation 

accuracy 

CNN-LSTM Fusion + 

Grey Relational Analysis 

Realistic variable 

cycling data 

RUL error: <5%,  

R²: >0.97 

Hybrid DL captures 

both localized and 
long-term degradation 

trends 

Hybrid Pack-Level DL 

Classifier-Regressor 

Series-connected 

battery pack with cell 

inconsistency 

SOH Classification 

Accuracy: 96.4%; 

Regression MAE: ≈3% 

DL effective for pack-
level SOH estimation 

with heterogeneous 

cells 

ConvLSTM with 

Attention + 
Metaheuristic 

Optimization 

Multi-feature energy 

increment dataset; EV-

like operation 

RMSE: 0.75%,  

MAE: 0.68% 

Advanced DL with 

metaheuristics yields 
highest reported SOH 

accuracy 

Domain 

Adaptation (DL) 

Self-Attention Domain-

Adaptation Network 

Shallow-cycle dataset; 

cross-domain 

MAE: ≈2% after 

domain alignment 

Transfer learning 
significantly reduces 

data requirements 

Reinforcement 

Learning 

DQN Charging 

Controller 

Fast-charging 
environment; real EV-

like constraints 

Charging time reduced 

by ~30%; degradation 

greatly reduced vs. 

CC/CV 

RL learns optimal fast-
charging strategy while 

mitigating SEI growth 

DRL-based Charging 

Optimization 

Real multiple-cycle 

EV operational dataset 

SOH degradation 
reduction: up to 20% 

vs. baseline CC/CV 

DRL adaptively 
regulates charging to 

minimize capacity fade 

RL Thermal + Health 

Management Agent 

EV-like load profiles; 

combined cooling and 

aging optimization 

Temperature deviation 

reduced by >15% and 

aging suppressed 

RL balances power 
demand, temperature 

and longevity in real-

time 
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E. Advantages and Limitations of Data-Driven and RL 

Approaches 

ML and DL methods provide high predictive accuracy and 
strong generalization when trained on sufficiently rich datasets, 
while RL methods extend these capabilities to real-time 
decision-making for charging optimization, thermal control and 
power management. However, all learning-based methods face 
challenges related to data availability, model interpretability, 
domain shift and computational constraints. DL and RL 
algorithms in particular require substantial datasets and high-
fidelity simulators, and their deployment in embedded systems 
demands model compression, rigorous safety validation and 
robust uncertainty handling. 

Despite these challenges, data-driven SOH/RUL estimation 
combined with RL-based control strategies represents a 
promising path toward fully adaptive, predictive and health-
aware battery management systems. Comparison of physics-
based, machine learning, deep learning, hybrid and 
reinforcement learning methods for battery SOH/RUL 
estimation and management are given in Table 2. while Table 3. 
summarizes performance of ML, DL and RL models for battery 
SOH/RUL estimation and management. Table 4. contains 

overview of common machine learning, deep learning, physics-
informed and reinforcement learning models for SOH/RUL 
prediction and battery management. 

VI. CHALLENGES IN AI-BASED BATTERY HEALTH 

ESTIMATION 

Artificial intelligence has significantly advanced the 
accuracy and scalability of battery state of health and remaining 
useful life estimation, yet several critical challenges continue to 
limit its reliability and widespread deployment. AI models must 
contend with heterogeneous and often scarce battery aging 
datasets, strong sensitivity to domain shifts across chemistries 
and operating conditions, and the lack of standardized evaluation 
protocols. Deep learning architectures, while powerful, 
frequently behave as black-box systems whose decisions are 
difficult to interpret, raising concerns in safety-critical 
applications such as electric vehicles and renewable energy 
storage. Model robustness, generalization, computational 
constraints in embedded battery management systems, and the 
need for physics consistency further complicate real-world 
implementation. Understanding these limitations is essential for 

TABLE IV.  OVERVIEW OF COMMON MACHINE LEARNING, DEEP LEARNING, PHYSICS-INFORMED AND REINFORCEMENT 

LEARNING MODELS FOR SOH/RUL PREDICTION AND BATTERY MANAGEMENT 

Method Category 
Representative 

Algorithms 

Key Input Features / 

Data Requirements 
Strengths Limitations 

Traditional Machine 

Learning  

RF, SVR, Gradient 

Boosting 

Engineered features 
(IC, DV curves, 

voltage interval 

features, resistance 

estimates); 

Interpretable, 

computationally 
efficient, small 

datasets sufficient 

Requires manual 

feature engineering, 
limited temporal 

modeling 

Convolutional 

Neural Networks  

1D-CNN, multi-

channel CNN 

Raw voltage/current 
curves, incremental 

capacity curves; 

Powerful local pattern 
extraction, robust to 

noise 

Limited modeling of 
long-term time 

dependencies 

Recurrent Neural 

Networks 
LSTM, GRU, BiLSTM 

Full or partial cycling 

time-series, 

temperature history; 

Captures temporal 

degradation trends, 

suitable for RUL 

Requires large 

sequences, higher 

computational cost 

Hybrid CNN–RNN 

Architectures 

CNN-LSTM, CNN-

GRU, ConvLSTM 

Raw + derived signal 

features; energy 

increments; 

State-of-the-art 

SOH/RUL accuracy; 

multi-scale 

degradation learning; 

High complexity; 

needs large training 

datasets; 

Attention-Based 

Models 

CNN-LSTM-Attention, 

Transformer-like 

models 

Raw time-series + 

engineered features; 

Learns long-range 

dependencies; strong 

generalization; 

Black-box behavior, 

high computational 

cost 

Physics-Informed 

Neural Networks 

Physics-informed SOH 

models, hybrid 

electrochemistry+DL 

Combines 

electrochemical 

constraints with time-
series data (e.g., SEI 

evolution, kinetic 

parameters); 

Improves 

interpretability and 
extrapolation; reduces 

data requirements; 

Training complexity; 

requires physical 

domain knowledge 

Domain 

Adaptation/Transfer 

Learning 

Self-attention domain 

adaptation, cross-

chemistry adaptation 

Shallow-cycle or 

heterogeneous 

datasets; 

Works with limited 

data; adaptable across 

chemistries; 

Requires careful 

calibration; not yet 

standard; 

Reinforcement 

Learning 

DQN, PPO, Actor-

Critic agents 

Environment 

interaction; digital 
twin simulators; 

charging/thermal 

states, constraints; 

Learns optimal 

charging/thermal 

control policies; 

reduces degradation; 
real-time adaptive 

control; 

Needs high-fidelity 

simulators; safety 
constraints; 

computational 

complexity; 

Digital Twin–

Integrated Models 

AI-enhanced digital 
twins (DT + 

ML/DL/RL) 

Real-time EV 
telemetry + physical 

models; 

Enables continuous 

SOH/RUL tracking, 

predictive 

maintenance 

Complex multi-layer 
integration; 

cybersecurity issues; 
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guiding future research toward more transparent, validated and 
industry-ready AI-based prognostic solutions.  

A. Data Availability, Quality and Representativeness 

One of the most critical barriers to reliable AI-based SOH 
estimation is the limited availability of high-quality battery 
aging datasets. Training deep learning models typically requires 
long-duration cycling data covering the full battery lifetime 
under multiple temperatures, load conditions and charging 
protocols. However, acquiring such datasets is costly and time-
intensive: cycling experiments may take months or years, and 
many battery manufacturers restrict access to proprietary test 
data. As emphasized in recent literature, publicly available 
datasets often include only a few cells, limited operating 
conditions, or incomplete life-cycle trajectories [7], [14]. 

Furthermore, laboratory datasets frequently fail to represent 
real-world electric vehicle usage patterns, which include 
variable C-rates, regenerative braking, temperature fluctuations 
and partial cycles. This mismatch introduces dataset shift, 
causing AI models trained in controlled environments to 
underperform when deployed in actual BMS applications. 
Transfer-learning and domain-adaptation approaches attempt to 
mitigate this challenge but require careful implementation and 
validation [20]. 

B. Generalization Across Chemistries, Manufacturers and 

Cycling Regimes 

Lithium-ion batteries differ significantly across chemistries 
(NMC, LFP, NCA), electrode formulations, manufacturing 
tolerances and pack-level configurations. Degradation 
pathways, such as SEI growth, cathode microcracking or lithium 
plating, manifest differently depending on the chemistry and 
operating conditions. As a result, AI models trained on one type 
of cell often fail when applied to another. Recent studies confirm 
that even small variations in cycling temperature, charging 
profile or manufacturer batch can lead to substantial prediction 
errors if not properly accounted for [4], [7]. 

Ensuring model generalization requires either extremely 
diverse training datasets, explicit domain adaptation 
mechanisms or hybrid models integrating physics-based 
constraints. Without such approaches, AI-based SOH estimation 
risks becoming overly specialized and unreliable for deployment 
across heterogeneous battery fleets. 

C. Interpretability, Explainability and Safety Requirements  

A major challenge for the adoption of AI methods in safety-
critical applications such as EVs is the limited interpretability of 
deep neural networks. Traditional model-based estimation 
methods offer clear, physically meaningful parameters (e.g. 
ohmic resistance or diffusion coefficients), whereas deep 
learning models operate as high-dimensional nonlinear function 
approximators with limited transparency. Integrating physical 
models with data-driven models can enhance the interpretability 
and transparency of the overall system, thereby fostering greater 
trust and reliability in the predictions [32]. 

This black-box nature complicates validation, certification 
and troubleshooting, especially when predictions influence 
safety-relevant decisions such as charge acceptance limits or 
thermal management. Recent surveys highlight that explainable 
AI (XAI) remains underdeveloped for battery applications, and 

that PINNs may offer a promising path by embedding 
electrochemical constraints into the learning process to improve 
transparency and reliability [11], [13], [25]. 

D. Computational Constraints and Deployment Challenges 

Commercial battery management systems operate on 
embedded microcontrollers with limited memory, processing 
power and energy budget. Deep learning models, particularly 
convolutional and recurrent architectures, may require millions 
of parameters and substantial computational resources, making 
them difficult to deploy without model compression or 
distillation. 

Moreover, real-time operation demands low-latency 
prediction, especially in EV applications where SOH estimation 
may influence charging control, thermal regulation or power-
limiting decisions. Only a small subset of research on AI-based 
SOH estimation explicitly considers inference latency, memory 
footprint or computational scalability, creating a gap between 
academic prototypes and deployable BMS solutions [7], [26]. 

E. Lack of Standardized Metrics, Protocols and Validation 

Frameworks 

Evaluation methodologies for SOH estimation vary widely 
across studies, making direct performance comparison 
challenging. Researchers use different metrics (MAE, RMSE, 
R²), state definitions (capacity-based, impedance-based, hybrid), 
preprocessing techniques and cycling protocols. This 
heterogeneity hinders reproducibility and slows progress toward 
regulatory or industrial standards. 

Recent reviews stress the urgent need for standardized 
testing frameworks, benchmark datasets and unified validation 
procedures to ensure reliable comparison of AI-based SOH 
models and to accelerate their certification for industrial use [4], 
[14]. Digital-twin-oriented methodologies have been suggested 
as a potential solution, enabling closed-loop validation of AI 
models against physical models and real-world data streams 
[12]. 

VII. FUTURE DIRECTIONS IN AI-DRIVEN BATTERY HEALTH 

ESTIMATION 

A. Integration of Physics-Informed AI and Hybrid Modeling  

A major direction for future research lies in the deeper 
integration of physics-based constraints into machine learning 
frameworks. Physics-informed neural networks, 
electrochemical constraint-regularized architectures and hybrid 
models that incorporate surrogate electrochemical behavior are 
expected to bridge the gap between empirical accuracy and 
physical interpretability. Given the promising results recently 
demonstrated for degradation modeling and long-term prognosis 
[11], [13], next-generation SOH estimation algorithms will 
likely adopt hybrid learning structures capable of fusing 
mechanistic laws with data-driven flexibility. Such models may 
enable robust extrapolation beyond the training domain, 
improve stability under sparse or noisy data, and support 
certification for safety-critical industrial applications. 

Furthermore, hybrid frameworks enabling real-time 
parameter identification (e.g. SEI resistance growth, diffusion 
coefficients or charge-transfer kinetics) may help unify 
traditional analytic diagnostics with modern AI inference 
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engines. This synergy is expected to become central in EV BMS 
architectures within the next decade. 

B. Development of Universal and Transferable Battery 

Health Models 

The increasing diversity of lithium-ion battery chemistries, 
formats and operating environments demands models that can 
generalize across a wide spectrum of conditions. Transfer 
learning, meta-learning and domain-adaptation methods show 
promise for enabling cross-chemistry, cross-manufacturer and 
cross-environment SOH estimation. Initial studies already 
demonstrate that domain adaptation using self-attention 
networks significantly improves SOH inference when only 
shallow-cycle data are available [20]. 

Future work will likely focus on large-scale foundation 
models for battery health (analogous to developments in natural 
language processing and computer vision) trained on 
multisource datasets covering various chemistries (NMC, LFP, 
NCA), formats (18650, pouch, prismatic) and use patterns (EV, 
grid storage, consumer electronics). These universal models 
may eventually be fine-tuned for specific applications using 
small amounts of new data, reducing the burden of long-term 
cycling experiments 

C. Federated Learning and Edge-AI for Privacy-Preserving 

Fleet Deployment 

As EV manufacturers accumulate massive quantities of 
operational data from vehicles in the field, concerns regarding 
data privacy, proprietary control and communication bandwidth 
limit the direct centralization of cell-level telemetry. Federated 
learning offers a promising solution by allowing distributed 
training across vehicles while keeping raw data local. Each 
device contributes model updates rather than raw sensor streams, 
preserving privacy and minimizing network load. 

Edge-AI architectures, combining embedded inference with 
cloud synchronization, may enable real-time SOH estimation at 
the vehicle level while continuously improving the global 
model. This hybrid cloud–edge deployment strategy supports 
scalable fleet-level monitoring and may shorten the 
development cycle for adaptive BMS software. Emerging digital 
twin frameworks already incorporate such distributed 
intelligence structures, suggesting strong potential for real-world 
integration [12]. 

D. Model Interpretability and Explainability  

Despite the rapid progress in machine learning and deep 
learning for battery SOH/RUL prediction, interpretability 
remains one of the most pressing challenges. Models deployed 
in electric vehicles and grid-scale storage must operate under 
strict safety and reliability constraints, and their decisions, 
especially in boundary or abnormal operating conditions, must 
be transparent and traceable. Traditional deep learning 
architectures often function as opaque black boxes, providing no 
direct means for operators or engineers to understand how input 
variables contribute to outputs. 

Recent research has begun addressing this gap through XAI 
and hybrid optimization techniques. Paper [25] demonstrated 
that integrating PSO optimization with interpretable deep 
learning enables models to identify which temporal features 
most strongly correlate with degradation trajectories, while still 

achieving competitive prediction accuracy. The work illustrates 
that high-performance SOH models can be both accurate and 
explainable, showing which voltage, current or temperature 
signatures are most relevant to predicted aging behavior. This 
direction is critical for earning regulatory acceptance, improving 
diagnostic confidence, and enabling BMS engineers to validate 
predictions in safety-critical environments. 

Future work will likely expand on these ideas by combining 
interpretable DL with physics-informed modeling, uncertainty 
quantification, and domain adaptation to create models that are 
not only powerful but also transparent, robust and generalizable 
across battery chemistries and applications. 

E. Digital Twins and Real-Time  

Digital twin systems have emerged as a powerful framework 
for integrating physical models, sensor data and AI predictions 
into a unified dynamic representation of a battery or battery 
pack. As reviewed in recent work [12], AI-enhanced digital 
twins can continuously synchronize with field measurements, 
enabling real-time SOH estimation, fault detection, charging 
optimization and RUL forecasting. 

The future of SOH estimation will likely involve multi-scale 
battery digital twins that incorporate cell-level degradation 
models, pack-level electrical and thermal interactions, and 
vehicle-level operational context. AI models embedded within 
these twins can adapt using online learning mechanisms as new 
data become available. This approach supports proactive 
maintenance, warranty analytics and extended battery lifetimes. 

F. Standardization, Benchmarking and Regulatory 

Frameworks 

One of the most important future directions concerns the 
establishment of standardized datasets, evaluation protocols and 
safety-certification methodologies. Current research suffers 
from inconsistent cycling procedures, nonuniform data-splitting 
strategies and incompatible metrics. Industry-wide benchmarks, 
similar to those used in autonomous driving or computer vision, 
will be game-changing for the validation and comparison of 
SOH estimation methods [4]. 

Regulatory bodies and standards organizations will need to 
define certification pathways for AI-based BMS algorithms. 
Future standards may specify minimum training data 
requirements, robustness testing, uncertainty quantification and 
explainability thresholds. Interoperability frameworks may also 
emerge, ensuring that AI-based health estimation modules can 
be deployed reliably across different EV platforms and energy 
storage systems. 

G. Explainability, Uncertainty Quantification and Reliability 

As AI becomes central to BMS design, future work must 
address the critical issues of explainability and uncertainty 
quantification. Techniques for interpretable deep learning, 
model confidence estimation and Bayesian neural networks are 
promising. These methods enable BMS designers to assess when 
predictions are trustworthy and to detect out-of-distribution 
conditions. Physics-informed explainable models, in particular, 
may offer a strong balance between mechanistic transparency 
and predictive accuracy [11], [26]. 

Increasing reliability under noisy conditions, model 
deterioration, hardware limitations and adversarial disturbances 
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will also remain a major focus. Robust AI models capable of 
operating with minimal calibration and self-correcting through 
online learning or self-supervised strategies will be essential for 
next-generation battery platforms. 

VIII. CONCLUSION 

The rapid expansion of electric vehicles, renewable energy 
systems and distributed storage technologies has elevated the 
importance of accurate and reliable battery state-of-health and 
remaining useful life estimation. While traditional 
methodologies, such as electrochemical diagnostics, equivalent 
circuit models and reduced-order physics-based approaches, 
remain essential for understanding degradation mechanisms and 
generating high-quality reference data, their limitations under 
dynamic operating conditions highlight the need for more 
adaptive and data-rich diagnostic tools.  

Artificial intelligence has become a transformative enabler 
in this domain. Machine learning methods provide robust and 
interpretable SOH estimates when supported by carefully 
engineered features, whereas deep learning architectures can 
autonomously extract degradation-sensitive representations 
from raw voltage–current–temperature data, achieving state-of-
the-art predictive accuracy. Hybrid, physics-informed neural 
networks further enhance generalization by combining the 
flexibility of data-driven learning with the interpretability and 
physical consistency of electrochemical models. 

Beyond prediction, reinforcement learning introduces a new 
dimension to battery management by enabling agents to learn 
optimal charging, thermal control and power regulation 
strategies that minimize long-term degradation. When combined 
with high-fidelity digital twins, RL- and DL-based control 
policies can be trained safely and efficiently, supporting real-
time, adaptive and fleet-wide battery management solutions. 

Conventional, commercially available BMSs usually 
provide SOH estimates that are good enough for safe operation 
and warranty management, but they often fall short of being 
highly accurate and consistently reliable across all real-world 
conditions, especially as batteries age, operate under highly 
dynamic loads, or experience wide temperature swings. In 
practice, traditional SOH can be stable but not always precise, 
especially near end-of-life or under unusual duty cycles. AI 
methods can outperform traditional SOH estimation in 
challenging regimes because they can learn nonlinear, history-
dependent degradation patterns from large datasets, use partial-
cycle data effectively (important for EV usage), fuse many 
signals (voltage/current/temperature, operational context, 
sometimes impedance or diagnostics) to improve sensitivity, and 
adapt to different conditions using transfer learning/domain 
adaptation. AI-based approaches can improve accuracy, 
sensitivity, and adaptability, but they introduce new validation, 
robustness, and explainability challenges that matter a lot for real 
products. 

Despite significant progress, several challenges remain 
unresolved. These include the scarcity of comprehensive aging 
datasets, limited generalization across chemistries and 
manufacturers, the black-box nature of deep models, 
computational constraints in embedded BMS hardware, and the 
absence of standardized validation procedures. Addressing these 
gaps will require closer integration of physics-informed AI, 

domain adaptation techniques, federated learning architectures 
and rigorous benchmarking frameworks. 

Overall, the convergence of advanced AI methods, 
reinforcement learning, and digital twin technologies points 
toward a new generation of intelligent battery management 
systems capable of delivering accurate health diagnostics, 
predictive maintenance, and degradation-aware control. These 
developments are poised to significantly enhance battery safety, 
performance and lifetime in both existing and future energy 
storage applications. 
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