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Abstract— Accurate estimation of the state of health and remaining useful life of lithium-ion batteries is essential for ensuring the
reliability, safety and longevity of electric vehicles, stationary storage systems and portable electronics. Traditional approaches based
on electrochemical diagnostics, equivalent circuit models and reduced-order physics-based methods provide valuable mechanistic
insights but face significant limitations under dynamic real-world operating conditions. Recent advances in artificial intelligence have
transformed battery diagnostics by enabling data-driven extraction of degradation-sensitive features from voltage, current and
temperature measurements. Machine learning algorithms such as random forests and support vector regression demonstrate strong
state of health estimation accuracy when combined with engineered features, while deep learning models, including convolutional
neural networks, long short-term memory, convolution long short-term memory and attention-based architectures, achieve state-of-
the-art performance by learning nonlinear temporal patterns directly from raw time-series data. Hybrid physics-informed neural
networks further enhance interpretability and generalization by embedding electrochemical constraints into model architectures. In
addition to supervised learning, reinforcement learning has emerged as a promising method for adaptive battery management,
enabling real-time optimization of charging strategies, thermal control and power allocation to minimize degradation and extend
battery lifetime. When integrated into digital twin frameworks, artificial intelligence models support continuous, real-time state of
health/remaining useful life tracking and predictive maintenance across large battery fleets. Despite these advances, challenges remain
in data availability, domain shift, model interpretability, computational constraints and the absence of standardized validation
protocols. Future research will focus on physics-informed hybrid artificial intelligence, transfer learning for cross-chemistry
generalization, federated learning for privacy-preserving fleet deployment and standardized benchmarking frameworks. Together,
these developments signal the emergence of next-generation intelligent battery management systems that combine accurate health
estimation with adaptive, degradation-aware control.
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mechanistic insights but face significant challenges when
deployed under dynamic real-world conditions characterized by
fluctuating temperatures, irregular load profiles and partial
cycling [3], [4]. These conditions cause degradation

L.

Lithium-ion batteries have become the dominant energy

INTRODUCTION

storage technology for electric vehicles (EV), grid-scale storage
systems and portable electronics due to their high energy
density, long cycle life and decreasing cost per kilowatt-hour.
Ensuring their safe and efficient operation, however, requires
accurate monitoring of internal states such as state of charge
(SOC), state of health (SOH), state of energy (SOE), state of
power (SOP), state of temperature (SOT), state of safety (SOS)
and remaining useful life (RUL), of which SOH monitoring is
critical to battery management for balancing the trade-off
between maximizing system performance and minimizing
battery degradation [1], [2]. Traditional diagnostic and modeling
approaches, including incremental capacity analysis, differential
voltage analysis, electrochemical impedance spectroscopy and
equivalent circuit or electrochemical models, provide essential

mechanisms such as solid electrolyte interphase (SEI) growth,
lithium plating and electrode microstructural changes to evolve
in nonlinear and path-dependent ways that traditional models
often struggle to capture.

The increasing availability of large-scale cycling datasets
and operational telemetry from electric vehicles has accelerated
the adoption of artificial intelligence (Al) in battery diagnostics.
Machine learning (ML) techniques can provide a viable
alternative and a useful tool for modelling battery behavior [5].
These methods, such as random forests or support vector
regression, have demonstrated strong performance in capacity
fade and SOH estimation when applied to engineered features
extracted from selected charge—discharge intervals [3]. In
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addition to this, auto regressor (AR), and Gaussian process
regression (GPR) act as common methods to estimate SOH and
RUL [6]. Deep learning (DL) methods, including feed-forward
neural networks (FNNs), convolutional neural networks
(CNNs), long short-term memory (LSTM) networks, temporal
convolutional networks (TCNs) and attention-based
architectures, further advance this capability by autonomously
learning degradation-sensitive temporal patterns directly from
raw voltage, current and temperature time-series data, achieving
sub-percent prediction errors in studies [6]-[9]. Recent studies
highlighted that LSTM, FNN, and CNN neural network
algorithms achieved the best performance, with a mean absolute
percentage error of around 0.5%, compared to about 1.5% for
FNN and 2% for CNN networks [10].

Hybrid approaches that integrate physics-based constraints
into neural architectures, commonly known as physics-informed
neural networks (PINNs), provide an additional layer of
interpretability = and  generalization by  embedding
electrochemical principles into the learning process [11]. These
models address limitations associated with black-box DL
methods and improve robustness under sparse or noisy data
conditions.

In parallel with advances in supervised learning,
reinforcement learning (RL) has emerged as a powerful
complementary technology for adaptive battery management.
Unlike supervised ML/DL models that estimate SOH or RUL
from historical data, RL agents learn optimal control strategies,
such as fast-charging protocols, thermal management policies or
power allocation schemes, by interacting with an environment
and maximizing long-term performance and safety objectives.
Recent work demonstrates that deep RL frameworks can
significantly reduce battery aging during fast charging, suppress
thermal stress and optimize charge—discharge schedules more
effectively than conventional rule-based or constant-
current/constant-voltage (CC/CV) methods [12], [13], [19].
When combined with digital twin (DT) simulators, RL agents
can be trained safely at scale, enabling real-time, degradation-
aware decision-making in modern battery management systems.

Despite significant progress, Al-driven battery health
estimation still faces notable challenges, including data scarcity,
poor generalization across chemistries and manufacturers,
limited interpretability of deep models, computational
constraints in onboard battery management system (BMS)
hardware and the lack of standardized validation protocols [4],
[11]. Addressing these issues is essential for the widespread
deployment of Al-enhanced diagnostic and control algorithms
in safety-critical applications such as electric vehicles.

This work provides a comprehensive review of traditional,
machine learning, deep learning, physics-informed and
reinforcement learning methodologies for SOH and RUL
estimation, highlighting their strengths, limitations and potential
integration into next-generation intelligent battery management
systems.

II.

State of Health estimation refers to the process of quantifying
the degradation level of a battery relative to its nominal, fresh
condition, and is defined as the current capacity or internal
resistance of the battery compared with that of a new one [28],
[29]. It reflects the battery’s ability to store and deliver energy
compared to its original performance and is most commonly

BATTERY STATE OF HEALTH ESTIMATION

expressed as a normalized metric, such as remaining capacity or
health percentage. SOH is a latent variable, meaning it cannot be
measured directly and must be inferred from observable
electrical, thermal, and operational signals. The general SOH
estimation process, independent of the specific estimation
technique, is illustrated in Fig. 1.

In practice, SOH estimation begins with a battery operating
under real-world conditions, including charging, discharging,
and exposure to varying temperatures and load profiles. These
operating conditions induce measurable responses in the battery,
most notably voltage, current, temperature, and time- or cycle-
related data. The quality and availability of these measurements
are critical, as they form the foundation for any health
assessment strategy.

The measured signals are subsequently processed to remove
noise, compensate for sensor inaccuracies, and align data across
different operating regimes. From these processed signals,
diagnostic indicators are extracted that are sensitive to internal
degradation mechanisms. Such indicators may represent
changes in capacity, internal resistance, voltage response
characteristics, or energy efficiency, each of which correlates
with aging phenomena such as loss of lithium inventory, growth
of internal resistive layers, or active material degradation.

The core of SOH estimation lies in interpreting these
diagnostic indicators using an estimation framework or model.
Depending on the chosen methodology, this framework may
rely on empirical relationships, equivalent circuit
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Figure 1. Battery SOH estimation process
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representations, electrochemical principles, or data-driven
mappings. Regardless of the approach, the objective is to
establish a reliable relationship between observable indicators
and the underlying degradation state of the battery.

The output of the estimation process is the SOH value,
typically expressed as a percentage of the nominal capacity or as
a normalized health index. This estimated SOH provides
actionable information for battery monitoring, maintenance
planning, safety assessment, and lifecycle management. In
battery management systems, SOH estimates are essential for
preventing overuse of degraded cells, enabling predictive
maintenance, and ensuring safe and efficient operation
throughout the battery’s service life.

III.

Traditional methodologies for evaluating the internal state
and degradation level of lithium-ion batteries form the historical
and theoretical basis on which modern diagnostic and prognostic
techniques are built. These approaches include experimental
diagnostic procedures, model-based estimation methods and
hybrid strategies that combine measurement-driven indicators
with simplified physics. Although they are valuable for physical
interpretability and controlled laboratory analysis, traditional
methods encounter limitations when applied to dynamic, real-
world operating environments such as electric vehicles or grid-
interactive storage systems. This section reviews the main
categories of traditional SOH estimation techniques and their
role in contemporary battery research.

TRADITIONAL BATTERY STATE ASSESSMENT METHODS

A. Experimental and Diagnostic Methods

Diagnostic techniques such as open-circuit voltage (OCV)
analysis, incremental capacity analysis (ICA), differential
voltage analysis (DVA), and electrochemical impedance
spectroscopy (EIS) have long been used to extract internal health
information from lithium-ion cells. ICA and DVA are
particularly sensitive to electrochemical aging because they
quantify characteristic peak shifts in voltage—capacity
derivatives that correspond to loss of active material, changes in
reaction overpotential and SEI layer growth. These analyses
require slow, highly controlled charge—discharge cycles, making
them excellent for laboratory studies of degradation mechanisms
but unsuitable for high-power or transient operating regimes
typically encountered in electric vehicle use cases.

Recent literature highlights that despite their impracticality
for real-time onboard estimation, ICA and DVA remain
fundamental tools for generating high-quality labels for machine
learning datasets and for validating the interpretability of Al-
based feature extraction pipelines [3], [14]. Similarly, EIS offers
unparalleled sensitivity to early-stage degradation by measuring
frequency-dependent resistance components but requires
specialized instrumentation and cannot be implemented during
normal EV driving. In practice, these techniques serve as offline
diagnostic benchmarks rather than operational tools for online
SOH estimation.

B. Model-Based Estimation Methods

Model-based approaches constitute the second major
category of traditional SOH estimation techniques. The model-
based method commonly consists of two steps [34]. The first
step is to establish a degradation model to simulate the aging of
the battery, in which, some parameters of the model indicate the

SOH of the battery. These models mainly include
Electrochemical Model (EM) and Equivalent Circuit Model
(ECM). The second step is to update the parameters of the model
to obtain the current SOH of the battery. Equivalent circuit
models, such as Thevenin and high-order RC models,
approximate a battery’s dynamic electrical response using
lumped resistive-capacitive networks. ECMs support real-time
estimation through Kalman filtering [27] and remain widely
used in commercial BMS because of their simplicity, low
computational cost and ease of parameter fitting. Nevertheless,
ECM parameters drift significantly as the battery ages, and these
models have difficulty capturing nonlinear or path-dependent
degradation phenomena without frequent re-identification.

Electrochemical models, such as the Doyle-Fuller-Newman
(DFN) model and its reduced-order variants, provide a more
physically grounded representation. They encode ion diffusion,
charge-transfer  kinetics,  electrolyte  transport  and
thermodynamic equilibria, enabling high-fidelity simulation of
mechanisms such as lithium plating and SEI layer formation.
However, the need to solve coupled partial differential equations
makes DFN models computationally expensive and
incompatible with embedded microcontrollers found in BMS.
Even reduced-order implementations require extensive
parameter calibration, limiting their practicality in fielded
systems [4].

Despite their limitations, both ECM and DFN models
continue to play critical roles in research. ECMs support fast
prototyping of estimation algorithms, while electrochemical
models provide physically interpretable ground truth for
validating Al-driven frameworks and hybrid physics-informed
architectures.

C. Limitations and Role in Modern Battery Analytics

Although traditional methods remain indispensable in
controlled laboratory settings, they face intrinsic limitations in
real-world battery prognostics. Their dependence on highly
regulated cycling conditions prevents widespread deployment in
systems where load patterns change rapidly, temperatures
oscillate unpredictably and full charge—discharge cycles rarely
occur. Additionally, traditional approaches lack mechanisms for
handling uncertainty, noise and variability across chemistries,
manufacturers and application domains.

Recent surveys on SOH estimation emphasize that
traditional methods now serve primarily as benchmarking and
calibration tools rather than operational diagnostic systems [4],
[14]. In particular, datasets derived from ICA, DVA and EIS
measurements are increasingly used to label and validate
machine learning models providing a bridge between physically
interpretable diagnostics and automated Al-driven estimation
pipelines [3], [15]. As machine learning and physics-informed
neural networks continue to advance, traditional methods
maintain their relevance by offering physically meaningful
features, validation frameworks and mechanistic insights that
purely data-driven systems cannot easily replicate. Table 1.
gives comparative analysis of traditional lithium-ion battery
state assessment methods.

91



Natasa Popovié

TABLE L COMPARATIVE ANALYSIS OF TRADITIONAL LITHIUM-ION BATTERY STATE ASSESSMENT METHODS
Method Principle/Measurement Main Advantages Main Limitations Typical Use Case
Measures cell voltage at Simple to implement; Requires long rest times
- near) equilibrium to no special hardware; to reach equilibrium; aborato
Open-Circuit quilibri pecial hard h equilibri Lab y
Vl:)l tage and infer SOC/SOH from good for approximate inaccurate under characterization;
Relafa tion voltage—capacity curves capacity fade dynamic EV conditions; | calibration of
and their shift over assessment under sensitive to temperature | SOC/SOH models;
aging; controlled conditions; and hysteresis;
Use.s derivative dQ/dV Very sensitive to aging; | Requires slow, low- . .
during slow P . L Aging mechanism
. oy can distinguish noise cycling; not . : .
Incremental charge/discharge; shifts . . . > . identification;
. . . different degradation directly applicable in -
Capacity and distortion of IC ) . . generating
k modes; useful for SOH | highly dynamic EV
Analysis peaks correspond to loss S i - labels/features for data-
. . tracking in controlled profiles; needs high- .
of active material, SEI X driven SOH models;
arowth, etc tests; resolution data;
Provides
Uses derivative dY/dQ; f:omplementary . Needs stable cycling; Detailed lab aging
. . analyzes changes in information to ICA; o S
Differential ; . . gy sensitive to studies; feature
. voltage—capacity slope to | effective for identifying . ;
Voltage Analysis . measurement noise; less | extraction for ML/DL
track electrode and changes in . .
. suited for online BMS; models;
electrolyte changes; cathode/anode
behavior;
. . . . S Time-consuming;
Direct Capacity Measurf:s usable capacity | Direct, intuitive SOH impractical in EV field Benchmarking aging
Measurement by cycling between measure; reference .
o . operation; accelerates tests; ground truth for
(Full Charge- defined voltage limits at method for capacity S .
. aging if done SOH label generation;
Discharge Test) low C-rate; fade;
frequently;
Applies gmall AC Highly sensitive to Requires specialized Laboratory diagnostics;
. perturbation over a range | early degradation; can . . . . .
Electrochemical . . equipment; difficult to parameter identification
of frequencies; analyzes separate ohmic, charge- .
Impedance . A apply during normal for ECM/DFN models;
complex impedance transfer and diffusion R . .
Spectroscopy . o . driving; sensitive to constructing EIS-based
response (Nyquist/Bode contributions; rich . o ;
. . o . | temperature and SOC; SOH indicators;
plots); diagnostic information;
Fits simple RC or Low computational Parameters drift with
Equivalent Thevenin circuits to zf;&jgézbéﬁg i%rll rllt%: ;r;%itlei:m;;zrature; On-board SOC/SOH
Circuit Models dynamic voltage/current intecrates natura’ll canture comt}iex estimation in
with Parameter | response; tracks changes Leg Y L P . commercial BMS; fast
. . L . with Kalman filtering nonlinear degradation; e
Identification in internal resistance and . prototyping;
time constants: for SOC/SOH requires frequent
’ estimation; recalibration;
Solve coupled PDEs . . . .
Physics-Based describing ion diffusion, ngh.physwal ﬁdghty, Comp}ltatlonally . High-fidelity
. can simulate specific intensive; demanding . T .
Electrochemical | charge transfer and - S simulation; digital-twin
. degradation parameterization; not . ;
Models (DFN transport in . . X cores; generation of
mechanisms (SEL directly suitable for f .
and Reduced- electrodes/electrolyte; g . . synthetic training data
. lithium plating, etc.); real-time embedded
Order) track internal states and useful as virtual lab: BMS: for Al models;
degradation mechanisms; ’ ’

IV. AI METHODS FOR BATTERY SOH ESTIMATION

Conventional SOH estimation techniques, often based on
complex electrochemical models or extensive laboratory testing,
tend to require a large number of measurements, advanced
instrumentation, and high computational cost [33]. Artificial
intelligence has emerged as a transformative tool for estimating
the state of health of lithium-ion batteries, addressing many of
the limitations inherent in traditional diagnostic techniques.
Unlike conventional methods that rely on controlled laboratory
conditions, predefined physical models or handcrafted features,
Al-based approaches can learn complex nonlinear degradation
patterns directly from operational data. Through machine
learning, deep learning, physics-informed modeling and, more
recently, reinforcement learning, Al enables accurate, scalable
and real-time prediction of battery aging under diverse and
highly dynamic conditions. These methods leverage large
datasets of voltage, current, temperature and cycling histories to

infer degradation mechanisms, model long-term capacity fade
and internal resistance growth, and provide robust estimates
even in the presence of noise, partial cycling or irregular load
profiles. Al-based SOH estimation therefore represents a key
advancement toward next-generation battery management
systems capable of adaptive diagnostics, predictive maintenance
and optimized operational control.

A. Rationale for Data-Driven Approaches

The increasing complexity of degradation phenomena in
lithium-ion batteries, especially under real-world usage
conditions characterized by variable loads, partial cycles,
fluctuating temperatures and heterogeneous usage patterns,
challenges the applicability of traditional model-based methods.
A data-driven SOH estimation model functions on mass data
without necessary dependence on the battery internal
degradation mechanism [28]. Data-driven approaches,
leveraging machine learning or deep learning, offer a flexible
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alternative by learning empirical mappings between observable
telemetry (voltage, current, temperature, cycle count) and
internal health indicators, thereby capturing nonlinear, path-
dependent effects that are difficult to model analytically [4], [7],
[16]. Moreover, as extensive aging datasets become more
available, either from laboratory cycling or from fleets of EVs,
data-driven algorithms become increasingly viable for robust
SOH estimation at scale. In [30], a model that continually learn
new aging information while maintaining the ability to estimate
the health of batteries that have similar aging conditions to the
learned information before, was developed.

A recent comprehensive review demonstrates that DL-based
methods consistently outperform classical ML and model-based
approaches in SOH estimation tasks, especially when large,
diverse datasets are available, and when models are trained to
operate under variable charging/discharging regimes [7]. The
flexibility of data-driven models allows them to adapt to
unknown or complex degradation modes, such as combined
capacity fade, impedance rise, or intermittent lithium plating,
which vary across cells and usage histories.

B. Machine Learning Methods

Traditional ML methods remain relevant in SOH estimation
due to their relatively small computational footprint,
interpretability, and requirement for less data. For instance, in
[3], feature extraction from a selected voltage interval during
charging, derived using incremental capacity analysis, was used
as input for random forest regression (RFR) or support vector
regression (SVR), resulting in accurate SOH predictions with
limited data. This approach reduces the data requirement
compared to full-cycle based methods and demonstrates that
carefully engineered features can yield effective capacity fade
estimates even under constrained data conditions [3]. ML
methods can model nonlinear relationships and temporal
degradation patterns directly from cycling data [35].

Further, hybrid feature-engineering pipelines combining
temporal features, temperature history, internal resistance
estimates and statistical descriptors of voltage/current curves
have been shown effective in ensemble regressors such as
gradient-boosted trees or random forests. These models preserve
interpretability of feature importance metrics, facilitating insight
into which operational patterns or signal characteristics most
strongly correlate with degradation, a property highly valued in
industrial BMS design.

C. Deep Learning Architectures: From Time-Series Learning
to Hybrid Models

Deep learning brings a paradigm shift by enabling end-to-
end learning directly from raw or minimally processed time-
series data collected during battery operation, without the need
for handcrafted features. For example, a recent systematic
review [7] shows that architectures including CNNs, recurrent
neural networks (RNNs), TCNs and transformer-based models
have been successfully employed for SOH estimation of lithium-
ion batteries in EV contexts, achieving high accuracy and
robustness across varying datasets.

One notable recent contribution proposed a hybrid DL model
that merges convolutional feature extraction, Kolmogorov-
Arnold network layers and bidirectional LSTM (BiLSTM),
using incremental energy features derived from charging and
discharging data to estimate SOH with high precision [17]. This

hybrid approach leverages the ability of CNNs to detect
localized features, the flexibility of Kolmogorov-Arnold
mappings for nonlinear transformation, and the temporal
modeling strength of LSTM networks, enabling accurate SOH
prediction even under complex and irregular cycling profiles
[17].

Another work demonstrated that deep learning frameworks
remain effective under real-world constraints by exploiting
short-time working condition windows instead of full-cycle
data, thereby reducing the data collection burden and
computational cost [18]. This development is especially relevant
for fleet-level deployment or real-time BMS, where full-cycle
capture is impractical.

D. Challenges and Considerations in AI-Based SOH
Estimation

Despite the advantages, Al-based methods for SOH
estimation come with challenges that warrant careful
consideration. First, data quality and representativeness remain
critical: models trained on laboratory cycling data may not
generalize to field conditions, where load profiles, temperature
fluctuations and user behaviors differ substantially. Second,
deep learning models often require large amounts of labeled
aging data for training; obtaining such data is costly and time-
consuming, especially for full lifetime degradation trajectories.
Third, interpretability remains a concern because black-box DL
models may provide accurate predictions, but without
explainable decision logic, their adoption in safety-critical BMS
systems can be limited.

Furthermore, hybrid models combining physics-based
knowledge with data-driven learning are being explored to
mitigate these issues, but integrating such constraints without
sacrificing flexibility remains a complex task. The balance
between  generalization, interpretability, = computational
efficiency and reliability under unseen conditions defines the
current frontier of Al-based battery diagnostics research.

V. MACHINE LEARNING AND DEEP LEARNING MODELS
FOR SOH AND RUL ESTIMATION

Machine learning and deep learning have become central
pillars of modern battery prognostics, offering powerful
alternatives to traditional physics-based and feature-engineered
methods for estimating the state of health and remaining useful
life of lithium-ion batteries. ML techniques provide flexible,
data-driven mappings between diagnostic features and
degradation states, while DL architectures can learn hierarchical
temporal and nonlinear patterns directly from raw voltage,
current, and temperature signals. These models have
demonstrated superior performance under diverse operating
conditions, including dynamic load profiles, partial cycling and
variable temperatures, scenarios where conventional approaches
typically underperform. With advancements such as attention
mechanisms, hybrid CNN-LSTM frameworks, physics-
informed networks and reinforcement learning—assisted
management strategies, Al-driven battery diagnostics are
rapidly evolving toward more accurate, interpretable and
deployable solutions for next-generation battery management
systems.
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A. Overview of Machine Learning Approaches

Machine learning has become a central component of battery
state of health estimation because it offers a practical balance
between accuracy, computational efficiency and transparency.
Instead of depending on complex electrochemical formulations,
ML methods learn empirical relationships between voltage,
current, temperature and cycling behavior and the underlying
degradation mechanisms. This learning capability makes ML
particularly useful for real-world conditions where batteries
operate under irregular load profiles, partial cycles and
fluctuating temperatures. Even relatively simple ML algorithms,
such as RFR and SVR, have demonstrated strong predictive
capability when supplied with informative engineered features,
such as incremental capacity or differential voltage descriptors
extracted from selected charging windows [3].

In addition to their computational efficiency, ML models
also offer interpretability through feature-importance analysis,
allowing engineers to identify specific operational patterns that
contribute most to degradation. This makes ML suitable for
integration into commercial battery management systems, where
explainability and robust performance are essential.

B. Deep Learning Architectures for SOH and RUL Prediction

Deep learning extends the capabilities of ML by learning
directly from raw time-series signals with minimal feature
engineering. Architectures such as CNNs, LSTM networks and
TCNs have shown superior performance over traditional ML
methods due to their ability to model nonlinear dynamics and
long-range temporal dependencies [7]. Recent hybrid models
have further advanced the state of the art by combining CNNss,
LSTMs and attention mechanisms, enabling networks to extract
both fine-grained and long-term aging patterns. A prominent
example is a CNN-LSTM-attention framework optimized
through metaheuristic search, achieving sub-percent errors in
SOH estimation under diverse cycling protocols [8]. Study [31]
proposes a multi-modal deep learning feature extraction method
based on charging data to extract comprehensive and effective
health indicators that reflect the SOH of the battery for
subsequent estimation.

For RUL prediction, CNN-LSTM fusion architectures have
also proved effective in learning both local degradation features
and global capacity fade trends, outperforming classical
prognostic methods under non-uniform operating conditions [9].
These advances highlight the ability of DL models to model
complex degradation trajectories using high-dimensional, noisy

and non-stationary data.

TABLE II. COMPARISON OF PHYSICS-BASED, MACHINE LEARNING, DEEP LEARNING, HYBRID AND REINFORCEMENT LEARNING
METHODS FOR BATTERY SOH/RUL ESTIMATION AND MANAGEMENT

Cl\: feﬂgl((:fy Model Characteristics Data Requirements Strengths Limitations
Governed by Computationally
electrochemical and Requires detailed High interpretability; intensive; parameter

Physics-Based thermodynamic parameterization; EIS, grounded in physics; identification is difficult;
Models equations; mechanistic lab characterization; good for simulation and limited performance in

modeling of SEI growth, | physical parameters; diagnostics; dynamic real-world
diffusion, kinetics; operation;
RF, S.VR_’ Gradient . .| Interpretable, fast, low Cannot fully capture

. Boosting; uses Moderate-sized datasets; . . .

Machine . . . computational load; nonlinear temporal

X engineered features extracted diagnostic .

Learning . ) good for embedded aging; depends on hand-
(IC/DV, resistance features; . .
features); BMS; crafted features;

CNN, LSTM, GRU, Large raw time-series Leamns nonlinear and Opaque (black box);
. temporal patterns
Deep Learning ConvLSTM, attention datasets (voltage, ] ) needs large datasets;
mechanisms; current, temperature); dlrecily, state-of-the-art high computational cost;
’ ? ’ SOH/RUL accuracy; ’
Combines differential Higher interpretability; .
Hybrid Physics- | equations Requires both training better robustness; Sr?;}[l:;iﬁjmh;ice?;e
Informed Neural | (electrochemical, data and physical improved extrapolation . &p ?
. . . domain knowledge

Networks thermal) with neural constraints; beyond training

A needed;
network structure; distribution;

Domain Self-attention domain Useful when data is .

. . . . . Requires careful
Adaptation/ adaptation; cross- Shallow-cycle datasets; scarce; generalizes calibration: still
Transfer chemistry and cross- limited labeled data; across chemistries and emergine: ’
Learning Models | condition generalization; labs; gne;
DOQN, PPO, Actor-Critic | Interaction with Learns op tl_mal long- Requires safe training
. . .. term charging/thermal .
Reinforcement RL agents for charging, environment or digital olicies: can reduce environment; complex to
Learning thermal control, and twin; real-time P . . validate for safety-
A . . degradation; adaptive . )
power management; operational data; . critical BMS;
and real-time;
Enables real-time Requires cloud—edge
Digital Twin— Hybrid DT + Al Continuous real-time SOH/RUL monitoring, in tg ration and g
Integrated frameworks (ML/DL/RL | telemetry; physical predictive maintenance, c bgrsecurit - model
Models + physics simulators); models; control and anomaly y . 'y,
detection; complexity;
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TABLE IIL. COMPARATIVE PERFORMANCE OF ML, DL AND RL MODELS FOR BATTERY SOH/RUL ESTIMATION AND
MANAGEMENT
. . .. Performance Metrics
Model Type Algorithm/Architecture Dataset/Conditions (Reported) Key Outcome
Selected charging RMSE: <2.5% SOH Fe}z;ture-batsed MSIE)H
Machine Learning | RF, SVR voltage interval (12— (RF), :zti:l;fii)rsl {sﬁﬁ limited
50% SOC) MAE: ~2%

data

Hybrid CNN-LSTM-
Attention

Benchmark cycling
data; full & partial
cycles

RMSE: 0.87%,
MAE: 0.82%

Attention-based DL
achieves sub-percent
SOH estimation
accuracy

CNN-LSTM Fusion +

Realistic variable

RUL error: <5%,

Hybrid DL captures
both localized and

vs. baseline CC/CV

Grey Relational Analysis | cycling data R2: >0.97 long-term degradation
Deep Learning trends
. . . DL effective for pack-
Hybrid Pack-Level DL Senes—connect;d SOH Cla5.51ﬁca;1(?n level SOH estimation
. battery pack with cell Accuracy: 96.4%; .
Classifier-Regressor . . : Y o with heterogeneous
inconsistency Regression MAE: =3% cells
ConvLSTM with Multi-feature ener. Advanced DL with
Attention + . '8y RMSE: 0.75%, metaheuristics yields
. increment dataset; EV- .
Metaheuristic . . MAE: 0.68% highest reported SOH
L. like operation
Optimization accuracy
Domain Self-Attention Domain- Shallow-cycle dataset; | MAE: =2% after :irﬁgs;;flar?;% cos
Adaptation (DL) Adaptation Network cross-domain domain alignment & wy
data requirements
. Charging time reduced .
DQN Charging Fast'-chargln.g by ~30%; degradation RL learns optimal fast-
environment; real EV- charging strategy while
Controller like constraints greatly reduced vs. mitigating SEI growth
(oo} gamg S e
Reinforcement DRL-based Charging Real multiple-cycle Seodlllgzir'asattl:g 0% ZRLl:t(;zsiI::tlll\;:l}i]n to
Learning Optimization EV operational dataset -up ’ gu ging

minimize capacity fade

RL Thermal + Health
Management Agent

EV-like load profiles;
combined cooling and
aging optimization

Temperature deviation
reduced by >15% and
aging suppressed

RL balances power
demand, temperature
and longevity in real-

time

C. Recent Developments and Specialized DL Models

Modern studies have expanded DL applications beyond
single cells to include pack-level diagnostics, where cell
inconsistency and differential aging complicate modeling tasks.
Hybrid deep learning models have achieved high accuracy in
SOH classification and estimation for series-connected cells,
demonstrating their applicability in electric vehicle battery packs
[19]. Furthermore, emerging research in domain adaptation and
transfer learning shows that deep models can successfully adapt
across chemistries, manufacturers or shallow-cycle datasets,
thereby reducing the need for exhaustive long-life cycling
experiments [20].

D. Reinforcement Learning for Adaptive Battery Management

In addition to supervised ML and DL methods used for SOH
and RUL estimation, reinforcement learning has gained
increasing attention for its ability to autonomously optimize
battery operating conditions. Unlike supervised learning, which
passively predicts battery health indicators, RL actively interacts
with the environment and learns control policies that optimize
long-term battery performance. This is particularly relevant for
charging strategies, thermal regulation and power allocation,
where the effects of operational decisions accumulate over time
and influence degradation trajectories.

Several studies demonstrate that deep reinforcement learning
(DRL) algorithms, such as deep Q-networks (DQN) or proximal
policy optimization (PPO), can design optimal charging
protocols that significantly reduce capacity fade compared to
conventional CC/CV) methods [21], [22]. RL-based policies
adapt charging currents in real time based on feedback such as
temperature, voltage gradients or estimated internal resistance,
resulting in improved safety and reduced SEI-related aging. RL
has also been integrated with battery thermal management
systems, where agents learn to balance cooling effort, power
demand and aging minimization under vehicle-like load
fluctuations [23], [24].

A growing research direction involves combining RL with
digital twin simulators to ensure safe, scalable training without
risking physical assets. In these frameworks, the RL agent
interacts with a high-fidelity electrochemical or data-driven
virtual battery model, enabling millions of simulated charge and
discharge cycles to be performed rapidly and safely. As digital
twin infrastructure for batteries matures, RL-based management
is expected to become a foundational component of next-
generation intelligent BMS architectures.
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E. Advantages and Limitations of Data-Driven and RL
Approaches

ML and DL methods provide high predictive accuracy and
strong generalization when trained on sufficiently rich datasets,
while RL methods extend these capabilities to real-time
decision-making for charging optimization, thermal control and
power management. However, all learning-based methods face
challenges related to data availability, model interpretability,
domain shift and computational constraints. DL and RL
algorithms in particular require substantial datasets and high-
fidelity simulators, and their deployment in embedded systems
demands model compression, rigorous safety validation and
robust uncertainty handling.

Despite these challenges, data-driven SOH/RUL estimation
combined with RL-based control strategies represents a
promising path toward fully adaptive, predictive and health-
aware battery management systems. Comparison of physics-
based, machine learning, deep learning, hybrid and
reinforcement learning methods for battery SOH/RUL
estimation and management are given in Table 2. while Table 3.
summarizes performance of ML, DL and RL models for battery
SOH/RUL estimation and management. Table 4. contains

overview of common machine learning, deep learning, physics-
informed and reinforcement learning models for SOH/RUL
prediction and battery management.

VI. CHALLENGES IN AI-BASED BATTERY HEALTH
ESTIMATION

Artificial intelligence has significantly advanced the
accuracy and scalability of battery state of health and remaining
useful life estimation, yet several critical challenges continue to
limit its reliability and widespread deployment. Al models must
contend with heterogeneous and often scarce battery aging
datasets, strong sensitivity to domain shifts across chemistries
and operating conditions, and the lack of standardized evaluation
protocols. Deep learning architectures, while powerful,
frequently behave as black-box systems whose decisions are
difficult to interpret, raising concerns in safety-critical
applications such as electric vehicles and renewable energy
storage. Model robustness, generalization, computational
constraints in embedded battery management systems, and the
need for physics consistency further complicate real-world
implementation. Understanding these limitations is essential for

TABLE IV.

OVERVIEW OF COMMON MACHINE LEARNING, DEEP LEARNING, PHYSICS-INFORMED AND REINFORCEMENT
LEARNING MODELS FOR SOH/RUL PREDICTION AND BATTERY MANAGEMENT

Method Category

Representative
Algorithms

Key Input Features /
Data Requirements

Strengths

Limitations

Traditional Machine

RF, SVR, Gradient

Engineered features
(IC, DV curves,
voltage interval

Interpretable,
computationally

Requires manual
feature engineering,

Learning Boosting . efficient, small limited temporal
features, resistance . .
. datasets sufficient modeling
estimates);
Convolutional LD-CNN, multi- chir‘:e\;oﬁlﬁee/rfli:;?t E)?t‘::crt?(l)lnlori)ab}upsitttsm {:)1:1 l-ttzcli’r;ng(rj':;mg of
Neural Networks channel CNN , ’ &

capacity curves;

noise

dependencies

Recurrent Neural
Networks

LSTM, GRU, BiLSTM

Full or partial cycling
time-series,
temperature history;

Captures temporal
degradation trends,
suitable for RUL

Requires large
sequences, higher
computational cost

Hybrid CNN-RNN
Architectures

CNN-LSTM, CNN-
GRU, ConvLSTM

Raw + derived signal
features; energy
increments;

State-of-the-art
SOH/RUL accuracy;
multi-scale
degradation learning;

High complexity;
needs large training
datasets;

Attention-Based
Models

CNN-LSTM-Attention,
Transformer-like
models

Raw time-series +
engineered features;

Learns long-range
dependencies; strong
generalization;

Black-box behavior,
high computational
cost

Physics-Informed
Neural Networks

Physics-informed SOH
models, hybrid
electrochemistry+DL

Combines
electrochemical
constraints with time-
series data (e.g., SEI
evolution, kinetic

Improves
interpretability and
extrapolation; reduces
data requirements;

Training complexity;
requires physical
domain knowledge

parameters);
Domain Self-attention domain Shallow-cycle or Works with limited Requires careful
Adaptation/Transfer | adaptation, cross- heterogeneous data; adaptable across calibration; not yet
Learning chemistry adaptation datasets; chemistries; standard;
Environment Leam§ optimal Needs high-fidelity
interaction; digital charging/thermal simulators; safety
Reinforcement DQN, PPO, Actor- LY control policies; L
X e twin simulators; . constraints;
Learning Critic agents . reduces degradation; .
charging/thermal . . computational
. real-time adaptive .
states, constraints; . complexity;
control;
.. . Enables continuous .
Digital Twin— AI'—enhanced digital Real-time EV . SOH/RUL tracking, Comple?( multi-layer
Inteerated Models twins (DT + telemetry + physical cedictive integration;
g ML/DL/RL) models; pre cybersecurity issues;
maintenance
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guiding future research toward more transparent, validated and
industry-ready Al-based prognostic solutions.

A. Data Availability, Quality and Representativeness

One of the most critical barriers to reliable Al-based SOH
estimation is the limited availability of high-quality battery
aging datasets. Training deep learning models typically requires
long-duration cycling data covering the full battery lifetime
under multiple temperatures, load conditions and charging
protocols. However, acquiring such datasets is costly and time-
intensive: cycling experiments may take months or years, and
many battery manufacturers restrict access to proprietary test
data. As emphasized in recent literature, publicly available
datasets often include only a few cells, limited operating
conditions, or incomplete life-cycle trajectories [7], [14].

Furthermore, laboratory datasets frequently fail to represent
real-world electric vehicle usage patterns, which include
variable C-rates, regenerative braking, temperature fluctuations
and partial cycles. This mismatch introduces dataset shift,
causing Al models trained in controlled environments to
underperform when deployed in actual BMS applications.
Transfer-learning and domain-adaptation approaches attempt to
mitigate this challenge but require careful implementation and
validation [20].

B. Generalization Across Chemistries, Manufacturers and

Cycling Regimes

Lithium-ion batteries differ significantly across chemistries
(NMC, LFP, NCA), electrode formulations, manufacturing
tolerances and pack-level configurations. Degradation
pathways, such as SEI growth, cathode microcracking or lithium
plating, manifest differently depending on the chemistry and
operating conditions. As a result, Al models trained on one type
of cell often fail when applied to another. Recent studies confirm
that even small variations in cycling temperature, charging
profile or manufacturer batch can lead to substantial prediction
errors if not properly accounted for [4], [7].

Ensuring model generalization requires either extremely
diverse training datasets, explicit domain adaptation
mechanisms or hybrid models integrating physics-based
constraints. Without such approaches, Al-based SOH estimation
risks becoming overly specialized and unreliable for deployment
across heterogeneous battery fleets.

C. Interpretability, Explainability and Safety Requirements

A major challenge for the adoption of Al methods in safety-
critical applications such as EVs is the limited interpretability of
deep neural networks. Traditional model-based estimation
methods offer clear, physically meaningful parameters (e.g.
ohmic resistance or diffusion coefficients), whereas deep
learning models operate as high-dimensional nonlinear function
approximators with limited transparency. Integrating physical
models with data-driven models can enhance the interpretability
and transparency of the overall system, thereby fostering greater
trust and reliability in the predictions [32].

This black-box nature complicates validation, certification
and troubleshooting, especially when predictions influence
safety-relevant decisions such as charge acceptance limits or
thermal management. Recent surveys highlight that explainable
Al (XAI) remains underdeveloped for battery applications, and

that PINNs may offer a promising path by embedding
electrochemical constraints into the learning process to improve
transparency and reliability [11], [13], [25].

D. Computational Constraints and Deployment Challenges

Commercial battery management systems operate on
embedded microcontrollers with limited memory, processing
power and energy budget. Deep learning models, particularly
convolutional and recurrent architectures, may require millions
of parameters and substantial computational resources, making
them difficult to deploy without model compression or
distillation.

Moreover, real-time operation demands low-latency
prediction, especially in EV applications where SOH estimation
may influence charging control, thermal regulation or power-
limiting decisions. Only a small subset of research on Al-based
SOH estimation explicitly considers inference latency, memory
footprint or computational scalability, creating a gap between
academic prototypes and deployable BMS solutions [7], [26].

E. Lack of Standardized Metrics, Protocols and Validation
Frameworks

Evaluation methodologies for SOH estimation vary widely
across studies, making direct performance comparison
challenging. Researchers use different metrics (MAE, RMSE,
R?), state definitions (capacity-based, impedance-based, hybrid),
preprocessing techniques and cycling protocols. This
heterogeneity hinders reproducibility and slows progress toward
regulatory or industrial standards.

Recent reviews stress the urgent need for standardized
testing frameworks, benchmark datasets and unified validation
procedures to ensure reliable comparison of Al-based SOH
models and to accelerate their certification for industrial use [4],
[14]. Digital-twin-oriented methodologies have been suggested
as a potential solution, enabling closed-loop validation of Al
models against physical models and real-world data streams
[12].

VII. FUTURE DIRECTIONS IN AI-DRIVEN BATTERY HEALTH

ESTIMATION

A. Integration of Physics-Informed Al and Hybrid Modeling

A major direction for future research lies in the deeper
integration of physics-based constraints into machine learning
frameworks. Physics-informed neural networks,
electrochemical constraint-regularized architectures and hybrid
models that incorporate surrogate electrochemical behavior are
expected to bridge the gap between empirical accuracy and
physical interpretability. Given the promising results recently
demonstrated for degradation modeling and long-term prognosis
[11], [13], next-generation SOH estimation algorithms will
likely adopt hybrid learning structures capable of fusing
mechanistic laws with data-driven flexibility. Such models may
enable robust extrapolation beyond the training domain,
improve stability under sparse or noisy data, and support
certification for safety-critical industrial applications.

Furthermore, hybrid frameworks enabling real-time
parameter identification (e.g. SEI resistance growth, diffusion
coefficients or charge-transfer kinetics) may help unify
traditional analytic diagnostics with modern Al inference
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engines. This synergy is expected to become central in EV BMS
architectures within the next decade.

B. Development of Universal and Transferable Battery
Health Models

The increasing diversity of lithium-ion battery chemistries,
formats and operating environments demands models that can
generalize across a wide spectrum of conditions. Transfer
learning, meta-learning and domain-adaptation methods show
promise for enabling cross-chemistry, cross-manufacturer and
cross-environment SOH estimation. Initial studies already
demonstrate that domain adaptation using self-attention
networks significantly improves SOH inference when only
shallow-cycle data are available [20].

Future work will likely focus on large-scale foundation
models for battery health (analogous to developments in natural
language processing and computer vision) trained on
multisource datasets covering various chemistries (NMC, LFP,
NCA), formats (18650, pouch, prismatic) and use patterns (EV,
grid storage, consumer electronics). These universal models
may eventually be fine-tuned for specific applications using
small amounts of new data, reducing the burden of long-term
cycling experiments

C. Federated Learning and Edge-Al for Privacy-Preserving
Fleet Deployment

As EV manufacturers accumulate massive quantities of
operational data from vehicles in the field, concerns regarding
data privacy, proprietary control and communication bandwidth
limit the direct centralization of cell-level telemetry. Federated
learning offers a promising solution by allowing distributed
training across vehicles while keeping raw data local. Each
device contributes model updates rather than raw sensor streams,
preserving privacy and minimizing network load.

Edge-Al architectures, combining embedded inference with
cloud synchronization, may enable real-time SOH estimation at
the vehicle level while continuously improving the global
model. This hybrid cloud—edge deployment strategy supports
scalable fleet-level monitoring and may shorten the
development cycle for adaptive BMS software. Emerging digital
twin frameworks already incorporate such distributed
intelligence structures, suggesting strong potential for real-world
integration [12].

D. Model Interpretability and Explainability

Despite the rapid progress in machine learning and deep
learning for battery SOH/RUL prediction, interpretability
remains one of the most pressing challenges. Models deployed
in electric vehicles and grid-scale storage must operate under
strict safety and reliability constraints, and their decisions,
especially in boundary or abnormal operating conditions, must
be transparent and traceable. Traditional deep learning
architectures often function as opaque black boxes, providing no
direct means for operators or engineers to understand how input
variables contribute to outputs.

Recent research has begun addressing this gap through XAI
and hybrid optimization techniques. Paper [25] demonstrated
that integrating PSO optimization with interpretable deep
learning enables models to identify which temporal features
most strongly correlate with degradation trajectories, while still

achieving competitive prediction accuracy. The work illustrates
that high-performance SOH models can be both accurate and
explainable, showing which voltage, current or temperature
signatures are most relevant to predicted aging behavior. This
direction is critical for earning regulatory acceptance, improving
diagnostic confidence, and enabling BMS engineers to validate
predictions in safety-critical environments.

Future work will likely expand on these ideas by combining
interpretable DL with physics-informed modeling, uncertainty
quantification, and domain adaptation to create models that are
not only powerful but also transparent, robust and generalizable
across battery chemistries and applications.

E. Digital Twins and Real-Time

Digital twin systems have emerged as a powerful framework
for integrating physical models, sensor data and Al predictions
into a unified dynamic representation of a battery or battery
pack. As reviewed in recent work [12], Al-enhanced digital
twins can continuously synchronize with field measurements,
enabling real-time SOH estimation, fault detection, charging
optimization and RUL forecasting.

The future of SOH estimation will likely involve multi-scale
battery digital twins that incorporate cell-level degradation
models, pack-level electrical and thermal interactions, and
vehicle-level operational context. Al models embedded within
these twins can adapt using online learning mechanisms as new
data become available. This approach supports proactive
maintenance, warranty analytics and extended battery lifetimes.

F. Standardization, Benchmarking and Regulatory
Frameworks

One of the most important future directions concerns the
establishment of standardized datasets, evaluation protocols and
safety-certification methodologies. Current research suffers
from inconsistent cycling procedures, nonuniform data-splitting
strategies and incompatible metrics. Industry-wide benchmarks,
similar to those used in autonomous driving or computer vision,
will be game-changing for the validation and comparison of
SOH estimation methods [4].

Regulatory bodies and standards organizations will need to
define certification pathways for Al-based BMS algorithms.
Future standards may specify minimum training data
requirements, robustness testing, uncertainty quantification and
explainability thresholds. Interoperability frameworks may also
emerge, ensuring that Al-based health estimation modules can
be deployed reliably across different EV platforms and energy
storage systems.

G. Explainability, Uncertainty Quantification and Reliability

As Al becomes central to BMS design, future work must
address the critical issues of explainability and uncertainty
quantification. Techniques for interpretable deep learning,
model confidence estimation and Bayesian neural networks are
promising. These methods enable BMS designers to assess when
predictions are trustworthy and to detect out-of-distribution
conditions. Physics-informed explainable models, in particular,
may offer a strong balance between mechanistic transparency
and predictive accuracy [11], [26].

Increasing reliability under noisy conditions, model
deterioration, hardware limitations and adversarial disturbances
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will also remain a major focus. Robust Al models capable of
operating with minimal calibration and self-correcting through
online learning or self-supervised strategies will be essential for
next-generation battery platforms.

VIIL

The rapid expansion of electric vehicles, renewable energy
systems and distributed storage technologies has elevated the
importance of accurate and reliable battery state-of-health and
remaining useful life estimation. While traditional
methodologies, such as electrochemical diagnostics, equivalent
circuit models and reduced-order physics-based approaches,
remain essential for understanding degradation mechanisms and
generating high-quality reference data, their limitations under
dynamic operating conditions highlight the need for more
adaptive and data-rich diagnostic tools.

CONCLUSION

Artificial intelligence has become a transformative enabler
in this domain. Machine learning methods provide robust and
interpretable SOH estimates when supported by carefully
engineered features, whereas deep learning architectures can
autonomously extract degradation-sensitive representations
from raw voltage—current-temperature data, achieving state-of-
the-art predictive accuracy. Hybrid, physics-informed neural
networks further enhance generalization by combining the
flexibility of data-driven learning with the interpretability and
physical consistency of electrochemical models.

Beyond prediction, reinforcement learning introduces a new
dimension to battery management by enabling agents to learn
optimal charging, thermal control and power regulation
strategies that minimize long-term degradation. When combined
with high-fidelity digital twins, RL- and DL-based control
policies can be trained safely and efficiently, supporting real-
time, adaptive and fleet-wide battery management solutions.

Conventional, commercially available BMSs usually
provide SOH estimates that are good enough for safe operation
and warranty management, but they often fall short of being
highly accurate and consistently reliable across all real-world
conditions, especially as batteries age, operate under highly
dynamic loads, or experience wide temperature swings. In
practice, traditional SOH can be stable but not always precise,
especially near end-of-life or under unusual duty cycles. Al
methods can outperform traditional SOH estimation in
challenging regimes because they can learn nonlinear, history-
dependent degradation patterns from large datasets, use partial-
cycle data effectively (important for EV usage), fuse many
signals (voltage/current/temperature, operational context,
sometimes impedance or diagnostics) to improve sensitivity, and
adapt to different conditions using transfer learning/domain
adaptation. Al-based approaches can improve accuracy,
sensitivity, and adaptability, but they introduce new validation,
robustness, and explainability challenges that matter a lot for real
products.

Despite significant progress, several challenges remain
unresolved. These include the scarcity of comprehensive aging
datasets, limited generalization across chemistries and
manufacturers, the black-box nature of deep models,
computational constraints in embedded BMS hardware, and the
absence of standardized validation procedures. Addressing these
gaps will require closer integration of physics-informed Al,

domain adaptation techniques, federated learning architectures
and rigorous benchmarking frameworks.

Overall, the convergence of advanced Al methods,
reinforcement learning, and digital twin technologies points
toward a new generation of intelligent battery management
systems capable of delivering accurate health diagnostics,
predictive maintenance, and degradation-aware control. These
developments are poised to significantly enhance battery safety,
performance and lifetime in both existing and future energy
storage applications.
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