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Abstract—This paper presents the application of various methods for predicting electricity generation in photovoltaic (PV) 

power plants using real experimental data obtained from the measurement of meteorological and operational parameters 

over a three-day period. The objective of the study was to develop a reliable and interpretable model for short-term 

prediction of PV system output power based on a limited set of available data. The research applied a linear regression 

model, multiple linear regression, and a Random Forest regression model. The models were trained using data from the 

first two days of measurement, while the third day was used for testing accuracy and verifying model performance. The 

input parameters included solar radiation, module temperature, wind speed, and ambient temperature, while the target 

variable was the measured output power of the power plant expressed in megawatts. The results show that both linear and 

multivariable linear regression achieved a high level of agreement between measured and predicted values, with multiple 

linear regression reaching an R² of approximately 0.97, indicating that it explains about 97% of the variations in output 

power. However, the Random Forest model demonstrated superior performance, achieving an R² of about 0.975 on the 

test set, due to its ability to model complex and nonlinear relationships between meteorological parameters and power 

generation. The analysis confirms that even from a limited three-day dataset, it is possible to build a stable, robust, and 

accurate model for short-term PV power output prediction. The Random Forest model proved to be the most reliable 

solution for this type of task, while multiple linear regression provided a simple and efficient baseline approximation 

suitable for rapid implementation in real-time solar energy monitoring and management systems. 

Keywords- photovoltaic power plants, power generation forecasting, linear regression, multiple linear regression, Random Forest, short-

term prediction, meteorological parameters. 

I.  INTRODUCTION  

In today’s world, where the share of electricity generated 
from renewable energy sources is measured not only daily but 
hourly, the issue of accurate, reliable, and precise forecasting of 
photovoltaic (PV) power plant output has become one of the 
key challenges in modern power systems based on renewable 
energy [1][2]. Its importance stems from the need to ensure 
reliable, stable, and economically viable operation of energy 
networks that increasingly depend on sources whose 
production varies with changing meteorological conditions. 

Since solar energy depends on factors such as solar 
radiation temperature, cloud cover, wind speed, and air 
humidity, electricity generation from PV systems exhibits a 
high degree of variability and uncertainty [3]. Precisely 
because of this unpredictability, the development of accurate 
production forecasting models has become a fundamental 

prerequisite for efficient energy management and successful 
integration of renewable sources into the power grid. 

Accurate estimation of future electricity production enables 
timely operational planning and system balancing, which 
includes optimizing available capacities, managing backup 
energy sources, and coordinating with consumption. In this 
way, forecasting contributes to reducing operational costs and 
improving energy efficiency, as it allows decision-making 
based on reliable and up-to-date data. In practice, this reduces 
the need to engage fossil reserves during periods of reduced PV 
output, directly contributing to the decarbonization of the 
energy sector. 

Moreover, accurate generation forecasting has strategic 
importance for the development of power grids and electricity 
markets. In a liberalized market, where electricity is bought and 
sold at dynamic prices, the ability to accurately predict 
generation allows producers to optimize their offers, avoid 
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imbalance penalties, and increase business profitability. At the 
same time, it provides grid operators with a foundation for 
long-term infrastructure planning, including energy storage 
systems, flexible consumers, and smart grids that enable 
adaptive, real-time energy management. 

In the context of the growing green digital transformation, 
forecasting PV output power transcends traditional energy 
analytics and becomes an integral part of digital systems based 
on artificial intelligence (AI), machine learning (ML), and the 
Internet of Things (IoT). Modern platforms for real-time data 
acquisition and processing, combined with predictive 
algorithms, enable the modeling of complex relationships 
between meteorological variations and PV output power. This 
results in a high level of automation and intelligent decision, 
making crucial for the stable operation of future smart energy 
networks. 

Thus, the importance of forecasting electricity production 
from PV power plants extends beyond the technical 
functioning of the system, encompassing economic, 
environmental, and strategic dimensions. It represents a key 
link connecting sustainable energy production, power system 
stability, and the goals of the energy transition. In this sense, 
the development of reliable and adaptive forecasting 
methods—which combine meteorological data, sensor-based 
measurements, and analytical models—forms the foundation 
for the future development of sustainable, digitally managed 
energy ecosystems. 

II. FORECASTING METOD IN POWER GENERATION 

MONITORING SYSTEMS 

 
In power generation monitoring systems, especially those 

applied to photovoltaic (PV) power plants, forecasting methods 
represent a crucial analytical component used to enhance 
operational performance, system stability, and overall energy 
efficiency. 
The main purpose of these methods is to estimate the current or 
future output power of a power plant based on available 
meteorological (such as solar irradiance, temperature, wind 
speed, humidity) and operational parameters (system status, 
inverter performance, historical generation data). 

Forecasting methods can generally be categorized into three 
principal groups: 

• Empirical (statistical) Methods – based on historical 
data and mathematical correlations between 
meteorological variables and power output. These 
include regression analysis, autoregressive models 
(AR, ARIMA), and exponential smoothing techniques. 

• Machine Learning (ML) Methods – capable of 
modeling nonlinear and complex dependencies 
between input and output variables. Typical examples 
include deciding trees, random forests, support vector 
machines (SVM), and gradient boosting methods such 
as XGBoost or LightGBM. 

• Deep Learning (DL) Methods – which employ 
advanced neural network architectures such as 
convolutional neural networks (CNN) and recurrent 
networks (RNN, LSTM) to capture both temporal and 

spatial patterns in data, enabling adaptive learning and 
long-term forecasting. 

By integrating these approaches, modern forecasting 
systems achieve higher accuracy, robustness, and adaptability, 
supporting the intelligent management of renewable energy 
resources within smart grid infrastructures. 

A. Empirical and statistical methods 

Empirical and statistical methods represent the oldest 
approach in the field of electric power generation forecasting, 
particularly in the context of photovoltaic power plants. These 
methods are based on mathematical modeling of the 
relationship between input meteorological parameters (such as 
solar irradiance, temperature, wind speed, air humidity, and 
atmospheric pressure) and the output electrical power of a 
photovoltaic system. Their main idea is to derive a functional 
dependence between variables from historical data to enable 
the estimation of future production values. 

The most used approaches within this category include: 

• Linear regression, which models a proportional 
relationship between a single independent and a 
dependent variable; 

• Multiple linear regression, which considers several 
meteorological input factors to achieve a more detailed 
system description; 

• Autoregressive models (AR, ARMA, ARIMA), which 
capture temporal dependencies between past and future 
production values; 

• Exponential smoothing methods, which assign greater 
weight to recent data and are used for short-term 
forecasts where rapid changes in meteorological 
conditions are expected. 

One of the key advantages of empirical methods lies in 
their simplicity of implementation and interpretability. These 
models require relatively few input parameters, and their 
interpretation is intuitive and transparent. For this reason, they 
have been widely used in the early stages of developing 
forecasting systems for power generation, as well as in 
situations where only limited data sets are available. 

However, the main limitation of empirical methods is their 
inability to accurately model complex and nonlinear 
relationships between input and output variables. For instance, 
linear regression may adequately describe the general trend 
between solar irradiance and generated power, but it fails to 
account for nonlinear effects that significantly influence PV 
system performance. These effects include: 

• The influence of module temperature, which 
substantially reduces conversion efficiency at higher 
temperatures; 

• The shading effect, where even a small shaded area can 
cause a disproportionately large drop in output power; 

• Thermal degradation and panel aging, which over time 
alter the relationship between input parameters and 
output power; 

• Nonlinear losses in inverters and cables, which further 
reduce the accuracy of linear models. 
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Due to these limitations, empirical methods are most used 
today as baseline models or reference systems for comparing 
the performance of more advanced approaches based on 
machine learning and deep neural networks. They are 
particularly useful in the initial stages of research, where the 
fundamental dependence between meteorological factors and 
energy production is analyzed, as well as in cases where a 
quick, approximate estimation is needed without complex 
computation. 

Moreover, empirical methods still play a significant role in 
hybrid forecasting systems, where they are combined with 
adaptive algorithms that correct their linear assumptions. For 
example, an empirical model may serve as an initial estimate 
that is subsequently refined by machine learning techniques 
based on real-time measurements and weather conditions. 

B. Machine learning methods 

With the development of advanced algorithms, increased 
availability of meteorological and operational data, and the 
growth of computational power, machine learning methods 
have become the dominant approach in the field of electricity 
generation forecasting, particularly for photovoltaic power 
plants. Unlike empirical and classical statistical methods, 
which assume predefined linear relationships, machine learning 
enables adaptive learning of complex and nonlinear 
relationships between input parameters (such as meteorological 
conditions) and output power [8]. 

The fundamental advantage of the ML approach lies in its 
ability to automatically adapt to changes in data without the 
need for explicit mathematical modeling of physical processes. 
In this way, these algorithms can detect hidden patterns and 
interdependencies between variables that would be difficult or 
impossible to identify using conventional methods. 

1) Decision Trees and Random Forest  

Decision Trees (DT) represent a fundamental machine 
learning model used for both classification and regression 
tasks. They operate by successively splitting the dataset 
according to criteria that minimize prediction error. However, a 
single decision tree is often prone to overfitting, meaning it can 
become overly tailored to the training data and lose 
generalization capability. 

To address this limitation, the Random Forest (RF) method 
is used an ensemble technique that combines a large number of 
decision trees, where each tree is trained on a different subset 
of the data. The final prediction is obtained through 
aggregation (averaging in regression or majority voting in 
classification), which significantly reduces variance and 
increases model stability. 

Random Forest has proven to be highly effective for short-
term forecasting of electricity generation, as it accurately 
models nonlinear relationships between meteorological 
parameters (such as solar irradiance, temperature, and wind 
speed) and power output, while requiring minimal data 
preprocessing. 

Additionally, RF models are robust to noise and outliers, 
making them well-suited for real-world energy applications 
where measurements can be incomplete or unstable. 

 

2) Support Vector Machines (SVM) 

Support Vector Machines represent another important 
approach in power generation forecasting, particularly effective 
when dealing with smaller datasets. The core idea of SVM is to 
find a hyperplane that best separates data into classes (in 
classification tasks) or defines an optimal regression function 
with minimal error (in regression tasks). 

In the context of photovoltaic systems, SVM models are 
used for nonlinear regression between meteorological input 
variables and power output. By applying kernel functions (such 
as polynomial, radial basis, or sigmoid kernels), the SVM 
model can transform the data into a higher-dimensional space, 
enabling it to learn complex relationships between temperature, 
irradiance, and energy production. 

The main advantage of SVM models lies in their high 
accuracy and stability when trained on small datasets. 
However, their computational complexity increases 
significantly with larger datasets, making them less suitable for 
real-time monitoring systems that process large volumes of 
continuous data. 

3) Gradient Boosting, XGBoost, and LightGBM 

Ensemble techniques based on the boosting principle, such 
as Gradient Boosting (GB), XGBoost (Extreme Gradient 
Boosting), and LightGBM (Light Gradient Boosting Machine), 
currently represent the industry standard in the field of 
predictive analytics. 

These models work by sequentially training a series of 
simple models (most often decision trees), where each 
subsequent model corrects the errors of its predecessors. This 
iterative process creates a strong predictive model with very 
low error and high generalization capability. 

XGBoost and LightGBM are advanced implementations of 
this approach — XGBoost is known for its stability and 
accuracy, while LightGBM achieves significantly higher 
computational speed, making it well-suited for real-time 
forecasting in systems that continuously collect meteorological 
data. 

These methods allow for a high degree of optimization and 
fine-tuning of hyperparameters, enabling exceptional model 
accuracy and the ability to detect complex nonlinear 
interactions between input variables. 

Machine learning methods enable the integration of a wide 
range of parameters that influence electricity generation, such 
as: solar radiation (global, direct, and diffuse), ambient and 
module temperature, wind speed and direction, relative 
humidity, atmospheric pressure, historical data on system 
production and losses. 

Compared to traditional methods, ML algorithms can 
autonomously learn complex nonlinear patterns from data, 
adapt to changes in weather conditions, and continuously 
improve performance through the retraining process. This 
enables high forecasting accuracy even under conditions of 
variable cloud cover, seasonal variations, and stochastic 
fluctuations in solar irradiance. 



 

Božidar Popović et al. 
 

74 
 

C. Hybrid and Intelligent Systems 

The latest trend in the field of electricity generation 
forecasting, particularly in photovoltaic power plants, is the 
development of hybrid and intelligent systems that combine the 
advantages of various methods: physical, statistical, machine 
learning, and deep learning approaches into unified, adaptive 
models. These systems are based on the idea that no single 
method can fully capture all aspects of the complex and 
dynamic behavior of PV systems. Therefore, by integrating 
complementary approaches, greater accuracy, robustness, and 
generalization capability can be achieved. 

 

1) Basic Concept of Hybrid Systems 

Hybrid models combine multiple layers of analysis: 
physical, analytical, and intelligent with the goal of achieving a 
more comprehensive understanding of the process of 
converting solar energy into electrical energy. Fundamentally, 
such a system can simultaneously employ: 

• a physical model (based on the laws of 
thermodynamics and the photoelectric effect) to 
describe the behavior of PV modules, 

• statistical models for quantitative analysis and noise 
filtering in the data,  

• intelligent models (e.g., machine learning and deep 
learning) for nonlinear mapping of input 
meteorological and operational parameters to output 
power. 

By combining these layers, hybrid systems enable enhanced 
predictive accuracy and resilience to extreme weather 
conditions, as well as self-learning adaptation to operational 
changes in the system over time. 

2) “Grey-box” Models  

One of the most well-known approaches within hybrid 
systems is the so-called “grey-box” model (Combination of 
Physical and ML Approaches). Unlike traditional “black-
box” models (e.g., pure ML algorithms that lack physical 
understanding of the system) and “white-box” models (fully 
physical models), grey-box models combine both concepts. 
In this approach: 

• The physical model defines the fundamental 
relationships between irradiance, temperature, and the 
electrical efficiency of PV modules; 

• While machine learning models the nonlinear 
components and residual errors that the physical model 
cannot accurately describe. 

In this way, a balance between interpretability and 
predictive power is achieved. These models are particularly 
useful for real PV systems, where local factors (such as 
shading, panel soiling, or microclimatic variations) are difficult 
to quantify but have a significant impact on energy production. 

 

3) Deep Hybrid Models: CNN–LSTM and Transformer 
Architectures 

Another important direction in the development of hybrid 
systems is the integration of deep neural networks, particularly 

the combination of Convolutional Neural Networks and Long 
Short-Term Memory architectures. CNN layers are used for: 
extracting spatio temporal patterns from data related to solar 
irradiance, temperature, and wind, while LSTM layers: model 
temporal dependencies and long-term production trends [7]. 

This integrated CNN–LSTM architecture enables the 
system to simultaneously learn local variations in time and 
space (e.g., passing clouds) and broader temporal patterns (e.g., 
seasonal changes). 

In addition to CNN–LSTM combinations, Transformer 
architectures models originally developed in the field of 
Natural Language Processing (NLP) are increasingly being 
applied. These models can analyze long temporal sequences 
and relationships between distant points in time series data. In 
the context of solar energy, Transformers enable more accurate 
long-term production forecasts and the detection of complex 
temporal patterns in meteorological and operational data. 

 

4) Intelligent Feedback-Based Systems 

Modern hybrid systems increasingly incorporate elements 
of autonomous control through the implementation of feedback 
loops. These systems not only forecast future energy 
production but also, in real time: 

• Analyze deviations between predicted and actual 
production; 

• Adapt the model based on new incoming data; 

• Optimize the operation of the photovoltaic plant (e.g., 
panel orientation, inverter control, or power 
distribution to storage units). 

These adaptive systems employ a Reinforcement Learning 
approach, where the algorithm continuously interacts with the 
environment and “learns” which actions lead to optimal 
outcomes in terms of energy efficiency and grid stability. 

The advantages of hybrid and intelligent systems are 
reflected in: 

• Robustness under unstable and rapidly changing 
weather conditions; 

• Flexibility in application across different geographic 
locations and types of power plants; 

• Adaptive learning capability through continuous model 
updates with new data; 

• Increased forecasting accuracy, achieved by combining 
multiple sources of information. 

However, their implementation requires: 

• Large volumes of high-quality data (meteorological, 
operational, and historical); 

• High computational power, particularly during the 
model training phase; 

• Precise parameter calibration to avoid overfitting. 

Despite these challenges, the advantages in accuracy and 
stability make hybrid approaches the most reliable solution for 
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forecasting energy production in complex and dynamic 
environments. 

Hybrid and intelligent systems represent an evolutionary 
step in the development of predictive technologies in the 
energy sector. 

Their ability to integrate physical knowledge, statistical 
principles, and intelligent algorithms enables the creation of 
autonomous, self-learning, and highly efficient models that can 
adapt to real operating conditions of photovoltaic power plants 
[9][10][11]. 

In the context of green digital transformation, these systems 
play a crucial role, as they enable intelligent energy 
management, accurate production planning, and optimized 
resource utilization all aimed at achieving a sustainable, 
reliable, and low-carbon energy future. 

III. MODEL DEVELOPMENT  

Based on the collected experimental measurements of 
meteorological and operational parameters over a three-day 
period (Fig.1.), a model for predicting the output power of a 
photovoltaic (PV) power plant was developed using the 
multivariate linear regression method. The measurements 
included the following variables: 

• Solar radiation (Radiation_Average), 

• Module temperature (Temp_Average), 

• Wind speed (Wind_Speed_Average), 

• Ambient temperature (Ambient_Temp_Average), 

• and the corresponding measured output power 
(P_meas) in megawatts (MW). 

The goal of the model was to establish a mathematical 
relationship between the meteorological parameters and the 
generated electrical power, in order to enable short-term 
forecasting of energy production under real operating 
conditions. 

Figure 1. Tabular representation of measured parameters 

For the analysis, only data collected during daylight hours 
(when radiation > 50 W/m²) were used, in order to eliminate 
nighttime and transition periods with negligible generation. 
Data from the first two days were used for model training, 
while the third day served as a test set for verifying prediction 
accuracy and robustness. 

After applying linear regression, the following predictive 
function was obtained: 

P = a0 + a1Grad + a2Tmod + a3vwind + a4Tamb                                   (1) 

where the coefficients a0, a1, a2, a3  and a4  were calculated 
through regression analysis using the training dataset (days 1. 
and 2.). 

The model was then tested on the third day, comparing the 
predicted and measured power outputs, while the data were 
processed in Python. The results are shown in Fig. 2. which 
clearly demonstrates a high degree of correlation between the 
measured and predicted values, with minor deviations observed 
during periods of rapid meteorological changes (e.g., passing 
clouds). 

Figure 2. Multivariate linear regression method Predicted Power – Day 3 

This experimental approach demonstrates that even with a 
relatively limited dataset (three days), it is possible to develop a 
reliable model for short-term power generation forecasting in 
photovoltaic systems. Such a model represents an important 
step toward the development of intelligent and automated 
energy management systems. 

In Figure 2, the graph illustrates the measured and predicted 
output power of the photovoltaic power plant for the third day 
of measurement. The results were obtained using multivariate 
linear regression, trained on data from the first two days, while 
the third day was used to test the model’s predictive capability. 

The x-axis represents the time of day (in hours), while the 
y-axis shows the PV system power output in megawatts (MW). 
Two curves are displayed — the orange line (Measured Power) 
and the blue dashed line (Predicted Power) showing a 
comparison between the actual and predicted electrical power 
generation during daylight hours. 

The results demonstrate a high degree of agreement 
between the measured and predicted power values, confirming 
the reliability and effectiveness of the linear regression 
approach in modeling the relationship between meteorological 
parameters (solar radiation, temperature, wind speed, and 
ambient temperature) and the PV system output power. The 
model successfully followed daily power variations, including 
the morning increase after sunrise, the stable midday operation, 
and the decline in the late afternoon. Minor deviations are 
noticeable during rapid changes in meteorological conditions, 
particularly between 10:00–11:00 and around 15:30, which can 
be attributed to passing clouds, short-term drops in solar 
irradiance, or local microclimatic effects that a linear model 
cannot fully capture. 
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Quantitatively, the model achieved R² ≈ 0.97 and RMSE ≈ 
0.9 MW on the test dataset, indicating that it explains over 97% 
of the variability in the actual output power. 
This level of accuracy confirms that linear regression, despite 
its simplicity, can be highly effective for short-term forecasting 
under stable meteorological conditions [4][5][6]. In conclusion, 
the presented results demonstrate that the applied model can 
accurately reproduce the operational dynamics of the 
photovoltaic power plant, making it suitable for integration into 
real-time monitoring and forecasting systems for solar energy 
production. 

In Fig. 3., the relationship between the measured and 
predicted output power of the PV power plant over all three 
days of measurement is shown. This result was also obtained 
using a multivariate linear regression model, which was 
previously trained on data from the first two days (training set) 
and then tested on the third day (test set). 

 Figure 3. Multivariate linear regression method Measured vs Predicted Power 
– Day 3 

For each data point, the predicted power (P_pred) was 
calculated based on the measured meteorological parameters. 
The figure displays the measured values (P_meas) and the 
corresponding predicted values (P_pred), which were paired 
and plotted as points on the diagram. 

The diagonal dashed black line represents the ideal fit, i.e., 
the case where the predicted power is exactly equal to the 
measured power. The plot clearly shows a strong correlation 
between the measured and predicted values. The points are 
mostly distributed along the diagonal, indicating that the model 
successfully reproduced the actual power output of the PV 
plant. Small deviations above or below the diagonal correspond 
to instances where the model slightly overestimated or 
underestimated the output power at certain moments. This 
distribution indicates that: 

• The model has no systematic error (e.g., it is not biased 
toward higher or lower values); 

• The predictions accurately follow the real variations in 
power generation; 

• The deviations are random and minor, confirming the 
model’s stability. 

Quantitatively, this result is supported by a high coefficient 
of determination and a low root mean square error, which 
clearly demonstrate that the model explains more than 97% of 
the variability in the actual output power. 

A. Application of the Random Forest Model 

The results of the Random Forest model application are 
shown in Fig. 4, where the output power of the photovoltaic 
(PV) power plant for the third day of measurement was also 
predicted, while the data were processed in Python. Similar to 
the previous approach, the Random Forest model was trained 
using data from the first two days, while the third day was used 
for testing the model’s accuracy, employing the same dataset as 
in the linear regression case. 

Figure 4. Random Forest Model  

The fact that the Random Forest algorithm is based on an 
ensemble of multiple decision trees enabled the model to 
capture nonlinear relationships between the input parameters 
and the generated electrical power relationships that linear 
regression could not fully represent. In Fig. 4, the orange line 
represents the measured power, while the blue dashed curve 
shows the predicted power obtained using the Random Forest 
model. The two curves almost completely overlap, indicating 
that the model achieves very high predictive accuracy 
throughout the day and explains about 97.5% of the variations 
in output power during the third day. The Random Forest 
model successfully tracks and predicts the following patterns, 
as visible in the graph: the morning increase in production after 
sunrise, the stable operation of the system around midday and 
the decline in power during the afternoon hours before sunset. 

Minor deviations occur during periods of rapid weather 
changes, such as passing clouds or temporary drops in solar 
irradiance, where the model may slightly overestimate or 
underestimate the actual power output. 
However, these deviations are minimal and reflect the natural 
variability of meteorological conditions, rather than model 
error. 

Overall, the Random Forest model has proven to be 
extremely robust and accurate in predicting solar energy 
production for the analyzed three-day dataset. 
Compared to linear regression, RF demonstrates better 
generalization capability and more accurately captures complex 



  

International Journal of Electrical Engineering and Computing  
Vol. 9, No. 2 (2025) 

 

77 
 

 

 

nonlinear dependencies in the data. 
The obtained results confirm that Random Forest is an optimal 
method for short-term forecasting of PV power plant output, 
especially when only a limited amount of measurement data is 
available, while maintaining high accuracy and stability even 
under variable weather conditions. 

B. Linear regression model 

The linear regression model operates by finding the best 
possible line (hyperplane) that minimizes the difference 
between the actual (measured) and predicted values of the 
output power (Fig. 5. And Fig 6.). This difference is expressed 
through the mean squared error (MSE). In practical terms, the 
model “learns” how the output power changes as 
meteorological parameters vary. For example: when solar 
radiation increases, the power output rises proportionally; an 
increase in module temperature up to a certain point enhances 
production, but high temperatures can reduce efficiency; higher 
wind speed helps cool the panels, thereby improving 
efficiency; while higher ambient temperature generally has a 
negative effect, as it increases the system’s thermal load. 

Figure 5. Linear regression model 

 

Figure 6. Linear regression model Measured vs Predicted Power – Day 3 

The linear model has a limited ability to accurately describe 
nonlinear and complex relationships between meteorological 
parameters and energy production. In cases of sudden changes 
in radiation (such as cloud cover or shading) or complex 

temperature effects, the linear model may exhibit deviations in 
peak values. 

IV. CHALLENGS AND PERSPECTIVES IN FORECASTING 

PHOTOVOLTAIC POWER PLANTS 

Forecasting electrical energy production from photovoltaic 
power plants is a complex task that depends on a wide range of 
factors meteorological, technical, and seasonal. The main 
challenges in this field arise from the high variability of 
weather conditions, the nonlinear relationships between input 
and output parameters, and the limitations in the quality and 
completeness of available data. Fluctuations in cloud cover, 
temperature, and wind speed often lead to sudden changes in 
solar irradiance, directly affecting power generation. In 
addition, local effects such as shading, panel soiling, and 
microclimatic variations which were not considered in this 
study, further complicate prediction accuracy, as these 
influences cannot be fully represented by standard models. 

In cases where only a few days of measurements are 
available, as in this study, models such as linear or multiple 
linear regression can provide a simple yet reliable 
approximation of the relationship between meteorological 
parameters and output power. However, when complete annual 
measurements are available which is increasingly common 
today due to the widespread operation of PV plants over 
extended periods it becomes possible to develop more 
advanced and robust predictive models. Long-term datasets 
enable the analysis of seasonal variations, recognition of daily 
and monthly patterns, and inclusion of additional factors that 
affect system performance under different conditions. In such 
cases, more sophisticated methods such as ensemble models 
(Random Forest, XGBoost, LightGBM) or neural networks 
(LSTM, CNN–LSTM) can be applied, as they effectively 
model nonlinear dependencies and temporal correlations 
between variables. 

When reliable meteorological forecasts are combined with 
historical measurements, predictive systems can be developed 
that estimate energy production with relatively high accuracy 
over short horizons from several hours up to one day ahead. 
However, building a well-trained model capable of accurate 
long-term forecasting remains a significant challenge, 
especially for prediction horizons extending beyond one, three, 
or up to seven days. The accuracy of such forecasts depends 
directly on the precision of weather prediction models the 
longer the forecast horizon, the greater the uncertainty. While 
daily forecasts can achieve very high levels of accuracy (R² 
above 0.9), seven-day forecasts tend to focus more on trend 
and scenario analysis rather than absolute precision. In this 
context, the implementation of hybrid approaches that combine 
physical modeling with machine learning represents the most 
promising direction for future development, as they allow the 
integration of meteorological data, historical measurements, 
and weather forecasts into a unified, adaptive system for the 
planning and optimization of PV power plant operation. 

V. CONCLUSION 

Forecasting photovoltaic power generation represents a key 
component of modern power systems based on renewable 
energy sources. This field integrates meteorological 
measurements, statistical approaches, and machine learning 
techniques to enable efficient planning, grid stability, and 
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optimization of PV system operation under real-world 
conditions. The conducted research demonstrated that even 
simple models, such as linear and multiple linear regression, 
can achieve high accuracy in short-term forecasting, 
particularly when the amount of available data is limited. 
Linear regression has proven to be a transparent, reliable, and 
computationally efficient tool, suitable for initial analysis 
stages and implementation in real-time energy monitoring and 
management systems. 

However, while linear models successfully describe the 
fundamental relationships between solar irradiance, 
temperature, wind speed, and output power, their limitations 
become evident under conditions of pronounced nonlinearity 
and dynamic meteorological changes. In this context, the 
application of ensemble methods particularly the Random 
Forest model has proven to be a superior solution. Random 
Forest enables more precise modeling of complex relationships 
among input parameters, providing high accuracy and stable 
predictions, even under varying cloud cover and temperature 
fluctuations. Its robustness, resistance to noise in the data, and 
generalization capability make it an optimal choice for short-
term forecasting in PV plants, especially when only a limited 
observation window is available. 

The results clearly indicate that combining traditional 
statistical techniques with modern machine learning methods 
can achieve high precision while maintaining model 
interpretability. Nevertheless, the future development of solar 
energy forecasting is moving toward the use of deep learning 
approaches. Convolutional Neural Networks, Long Short-Term 
Memory networks, and their hybrid architectures CNN–LSTM 
enable modeling of complex spatiotemporal and nonlinear 
patterns, making them the foundation of intelligent and 
autonomous energy systems. These models not only provide 
highly accurate forecasts but also allow adaptive learning and 
real-time adjustment to changing environmental conditions. 

Within the framework of the green digital transformation, 
the integration of advanced predictive models with cloud 
infrastructure and the Internet of Things (IoT) enables the 
creation of smart grids and digital twins of photovoltaic 
facilities. Such systems allow real-time monitoring, analysis, 
and optimization of energy production with minimal human 
intervention. In this way, the foundation is laid for highly 
efficient, self-learning, and sustainable energy ecosystems of 
the future, where power generation forecasting is not merely a 

technical task but an integral component of intelligent energy 
management and strategic resource planning. 
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