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Abstract—This paper presents the application of various methods for predicting electricity generation in photovoltaic (PV)
power plants using real experimental data obtained from the measurement of meteorological and operational parameters
over a three-day period. The objective of the study was to develop a reliable and interpretable model for short-term
prediction of PV system output power based on a limited set of available data. The research applied a linear regression
model, multiple linear regression, and a Random Forest regression model. The models were trained using data from the
first two days of measurement, while the third day was used for testing accuracy and verifying model performance. The
input parameters included solar radiation, module temperature, wind speed, and ambient temperature, while the target
variable was the measured output power of the power plant expressed in megawatts. The results show that both linear and
multivariable linear regression achieved a high level of agreement between measured and predicted values, with multiple
linear regression reaching an R? of approximately 0.97, indicating that it explains about 97% of the variations in output
power. However, the Random Forest model demonstrated superior performance, achieving an R? of about 0.975 on the
test set, due to its ability to model complex and nonlinear relationships between meteorological parameters and power
generation. The analysis confirms that even from a limited three-day dataset, it is possible to build a stable, robust, and
accurate model for short-term PV power output prediction. The Random Forest model proved to be the most reliable
solution for this type of task, while multiple linear regression provided a simple and efficient baseline approximation
suitable for rapid implementation in real-time solar energy monitoring and management systems.

Keywords- photovoltaic power plants, power generation forecasting, linear regression, multiple linear regression, Random Forest, short-
term prediction, meteorological parameters.

prerequisite for efficient energy management and successful

integration of renewable sources into the power grid.
I. INTRODUCTION

Accurate estimation of future electricity production enables
timely operational planning and system balancing, which
includes optimizing available capacities, managing backup
energy sources, and coordinating with consumption. In this
way, forecasting contributes to reducing operational costs and
improving energy efficiency, as it allows decision-making
based on reliable and up-to-date data. In practice, this reduces
the need to engage fossil reserves during periods of reduced PV
output, directly contributing to the decarbonization of the
energy sector.

In today’s world, where the share of electricity generated
from renewable energy sources is measured not only daily but
hourly, the issue of accurate, reliable, and precise forecasting of
photovoltaic (PV) power plant output has become one of the
key challenges in modern power systems based on renewable
energy [1][2]. Its importance stems from the need to ensure
reliable, stable, and economically viable operation of energy
networks that increasingly depend on sources whose
production varies with changing meteorological conditions.

Since solar energy depends on factors such as solar
radiation temperature, cloud cover, wind speed, and air
humidity, electricity generation from PV systems exhibits a
high degree of variability and uncertainty [3]. Precisely
because of this unpredictability, the development of accurate
production forecasting models has become a fundamental

Moreover, accurate generation forecasting has strategic
importance for the development of power grids and electricity
markets. In a liberalized market, where electricity is bought and
sold at dynamic prices, the ability to accurately predict
generation allows producers to optimize their offers, avoid
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imbalance penalties, and increase business profitability. At the
same time, it provides grid operators with a foundation for
long-term infrastructure planning, including energy storage
systems, flexible consumers, and smart grids that enable
adaptive, real-time energy management.

In the context of the growing green digital transformation,
forecasting PV output power transcends traditional energy
analytics and becomes an integral part of digital systems based
on artificial intelligence (Al), machine learning (ML), and the
Internet of Things (IoT). Modern platforms for real-time data
acquisition and processing, combined with predictive
algorithms, enable the modeling of complex relationships
between meteorological variations and PV output power. This
results in a high level of automation and intelligent decision,
making crucial for the stable operation of future smart energy
networks.

Thus, the importance of forecasting electricity production
from PV power plants extends beyond the technical
functioning of the system, encompassing economic,
environmental, and strategic dimensions. It represents a key
link connecting sustainable energy production, power system
stability, and the goals of the energy transition. In this sense,
the development of reliable and adaptive forecasting
methods—which combine meteorological data, sensor-based
measurements, and analytical models—forms the foundation
for the future development of sustainable, digitally managed
energy ecosystems.

II.  FORECASTING METOD IN POWER GENERATION

MONITORING SYSTEMS

In power generation monitoring systems, especially those

applied to photovoltaic (PV) power plants, forecasting methods
represent a crucial analytical component used to enhance
operational performance, system stability, and overall energy
efficiency.
The main purpose of these methods is to estimate the current or
future output power of a power plant based on available
meteorological (such as solar irradiance, temperature, wind
speed, humidity) and operational parameters (system status,
inverter performance, historical generation data).

Forecasting methods can generally be categorized into three
principal groups:

e Empirical (statistical) Methods — based on historical
data and mathematical correlations  between
meteorological variables and power output. These
include regression analysis, autoregressive models

(AR, ARIMA), and exponential smoothing techniques.

Machine Learning (ML) Methods — capable of
modeling nonlinear and complex dependencies
between input and output variables. Typical examples
include deciding trees, random forests, support vector
machines (SVM), and gradient boosting methods such
as XGBoost or LightGBM.

Deep Learning (DL) Methods — which employ
advanced neural network architectures such as
convolutional neural networks (CNN) and recurrent
networks (RNN, LSTM) to capture both temporal and

spatial patterns in data, enabling adaptive learning and
long-term forecasting.

By integrating these approaches, modern forecasting
systems achieve higher accuracy, robustness, and adaptability,
supporting the intelligent management of renewable energy
resources within smart grid infrastructures.

A. Empirical and statistical methods

Empirical and statistical methods represent the oldest
approach in the field of electric power generation forecasting,
particularly in the context of photovoltaic power plants. These
methods are based on mathematical modeling of the
relationship between input meteorological parameters (such as
solar irradiance, temperature, wind speed, air humidity, and
atmospheric pressure) and the output electrical power of a
photovoltaic system. Their main idea is to derive a functional
dependence between variables from historical data to enable
the estimation of future production values.

The most used approaches within this category include:

e Linear regression, which models a proportional
relationship between a single independent and a

dependent variable;

Multiple linear regression, which considers several
meteorological input factors to achieve a more detailed
system description;

Autoregressive models (AR, ARMA, ARIMA), which
capture temporal dependencies between past and future
production values;

Exponential smoothing methods, which assign greater
weight to recent data and are used for short-term
forecasts where rapid changes in meteorological
conditions are expected.

One of the key advantages of empirical methods lies in
their simplicity of implementation and interpretability. These
models require relatively few input parameters, and their
interpretation is intuitive and transparent. For this reason, they
have been widely used in the early stages of developing
forecasting systems for power generation, as well as in
situations where only limited data sets are available.

However, the main limitation of empirical methods is their
inability to accurately model complex and nonlinear
relationships between input and output variables. For instance,
linear regression may adequately describe the general trend
between solar irradiance and generated power, but it fails to
account for nonlinear effects that significantly influence PV
system performance. These effects include:

e The influence of module temperature, which
substantially reduces conversion efficiency at higher
temperatures;

The shading effect, where even a small shaded area can
cause a disproportionately large drop in output power;

Thermal degradation and panel aging, which over time
alter the relationship between input parameters and
output power;

Nonlinear losses in inverters and cables, which further
reduce the accuracy of linear models.
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Due to these limitations, empirical methods are most used
today as baseline models or reference systems for comparing
the performance of more advanced approaches based on
machine learning and deep neural networks. They are
particularly useful in the initial stages of research, where the
fundamental dependence between meteorological factors and
energy production is analyzed, as well as in cases where a
quick, approximate estimation is needed without complex
computation.

Moreover, empirical methods still play a significant role in
hybrid forecasting systems, where they are combined with
adaptive algorithms that correct their linear assumptions. For
example, an empirical model may serve as an initial estimate
that is subsequently refined by machine learning techniques
based on real-time measurements and weather conditions.

B.  Machine learning methods

With the development of advanced algorithms, increased
availability of meteorological and operational data, and the
growth of computational power, machine learning methods
have become the dominant approach in the field of electricity
generation forecasting, particularly for photovoltaic power
plants. Unlike empirical and classical statistical methods,
which assume predefined linear relationships, machine learning
enables adaptive learning of complex and nonlinear
relationships between input parameters (such as meteorological
conditions) and output power [8].

The fundamental advantage of the ML approach lies in its
ability to automatically adapt to changes in data without the
need for explicit mathematical modeling of physical processes.
In this way, these algorithms can detect hidden patterns and
interdependencies between variables that would be difficult or
impossible to identify using conventional methods.

1) Decision Trees and Random Forest

Decision Trees (DT) represent a fundamental machine
learning model used for both classification and regression
tasks. They operate by successively splitting the dataset
according to criteria that minimize prediction error. However, a
single decision tree is often prone to overfitting, meaning it can
become overly tailored to the training data and lose
generalization capability.

To address this limitation, the Random Forest (RF) method
is used an ensemble technique that combines a large number of
decision trees, where each tree is trained on a different subset
of the data. The final prediction is obtained through
aggregation (averaging in regression or majority voting in
classification), which significantly reduces variance and
increases model stability.

Random Forest has proven to be highly effective for short-
term forecasting of electricity generation, as it accurately
models nonlinear relationships between meteorological
parameters (such as solar irradiance, temperature, and wind
speed) and power output, while requiring minimal data
preprocessing.

Additionally, RF models are robust to noise and outliers,
making them well-suited for real-world energy applications
where measurements can be incomplete or unstable.

2) Support Vector Machines (SVM)

Support Vector Machines represent another important
approach in power generation forecasting, particularly effective
when dealing with smaller datasets. The core idea of SVM is to
find a hyperplane that best separates data into classes (in
classification tasks) or defines an optimal regression function
with minimal error (in regression tasks).

In the context of photovoltaic systems, SVM models are
used for nonlinear regression between meteorological input
variables and power output. By applying kernel functions (such
as polynomial, radial basis, or sigmoid kernels), the SVM
model can transform the data into a higher-dimensional space,
enabling it to learn complex relationships between temperature,
irradiance, and energy production.

The main advantage of SVM models lies in their high
accuracy and stability when trained on small datasets.
However, their computational complexity increases
significantly with larger datasets, making them less suitable for
real-time monitoring systems that process large volumes of
continuous data.

3) Gradient Boosting, XGBoost, and LightGBM

Ensemble techniques based on the boosting principle, such
as Gradient Boosting (GB), XGBoost (Extreme Gradient
Boosting), and LightGBM (Light Gradient Boosting Machine),
currently represent the industry standard in the field of
predictive analytics.

These models work by sequentially training a series of
simple models (most often decision trees), where each
subsequent model corrects the errors of its predecessors. This
iterative process creates a strong predictive model with very
low error and high generalization capability.

XGBoost and LightGBM are advanced implementations of
this approach — XGBoost is known for its stability and
accuracy, while LightGBM achieves significantly higher
computational speed, making it well-suited for real-time
forecasting in systems that continuously collect meteorological
data.

These methods allow for a high degree of optimization and
fine-tuning of hyperparameters, enabling exceptional model
accuracy and the ability to detect complex nonlinear
interactions between input variables.

Machine learning methods enable the integration of a wide
range of parameters that influence electricity generation, such
as: solar radiation (global, direct, and diffuse), ambient and
module temperature, wind speed and direction, relative
humidity, atmospheric pressure, historical data on system
production and losses.

Compared to traditional methods, ML algorithms can
autonomously learn complex nonlinear patterns from data,
adapt to changes in weather conditions, and continuously
improve performance through the retraining process. This
enables high forecasting accuracy even under conditions of
variable cloud cover, seasonal variations, and stochastic
fluctuations in solar irradiance.
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C. Hybrid and Intelligent Systems

The latest trend in the field of electricity generation
forecasting, particularly in photovoltaic power plants, is the
development of hybrid and intelligent systems that combine the
advantages of various methods: physical, statistical, machine
learning, and deep learning approaches into unified, adaptive
models. These systems are based on the idea that no single
method can fully capture all aspects of the complex and
dynamic behavior of PV systems. Therefore, by integrating
complementary approaches, greater accuracy, robustness, and
generalization capability can be achieved.

1) Basic Concept of Hybrid Systems

Hybrid models combine multiple layers of analysis:
physical, analytical, and intelligent with the goal of achieving a
more comprehensive understanding of the process of
converting solar energy into electrical energy. Fundamentally,
such a system can simultaneously employ:

e a physical model (based on the laws of
thermodynamics and the photoelectric effect) to
describe the behavior of PV modules,

e statistical models for quantitative analysis and noise
filtering in the data,

e intelligent models (e.g., machine learning and deep
learning)  for nonlinear mapping of input
meteorological and operational parameters to output
power.

By combining these layers, hybrid systems enable enhanced
predictive accuracy and resilience to extreme weather
conditions, as well as self-learning adaptation to operational
changes in the system over time.

2) “Grey-box” Models

One of the most well-known approaches within hybrid
systems is the so-called “grey-box” model (Combination of
Physical and ML Approaches). Unlike traditional “black-
box” models (e.g., pure ML algorithms that lack physical
understanding of the system) and “white-box” models (fully
physical models), grey-box models combine both concepts.
In this approach:

e The physical model defines the fundamental
relationships between irradiance, temperature, and the
electrical efficiency of PV modules;

e While machine learning models the nonlinear
components and residual errors that the physical model
cannot accurately describe.

In this way, a balance between interpretability and
predictive power is achieved. These models are particularly
useful for real PV systems, where local factors (such as
shading, panel soiling, or microclimatic variations) are difficult
to quantify but have a significant impact on energy production.

3) Deep Hybrid Models: CNN-LSTM and Transformer
Architectures

Another important direction in the development of hybrid
systems is the integration of deep neural networks, particularly

the combination of Convolutional Neural Networks and Long
Short-Term Memory architectures. CNN layers are used for:
extracting spatio temporal patterns from data related to solar
irradiance, temperature, and wind, while LSTM layers: model
temporal dependencies and long-term production trends [7].

This integrated CNN-LSTM architecture enables the
system to simultaneously learn local variations in time and
space (e.g., passing clouds) and broader temporal patterns (e.g.,
seasonal changes).

In addition to CNN-LSTM combinations, Transformer
architectures models originally developed in the field of
Natural Language Processing (NLP) are increasingly being
applied. These models can analyze long temporal sequences
and relationships between distant points in time series data. In
the context of solar energy, Transformers enable more accurate
long-term production forecasts and the detection of complex
temporal patterns in meteorological and operational data.

4) Intelligent Feedback-Based Systems

Modern hybrid systems increasingly incorporate elements
of autonomous control through the implementation of feedback
loops. These systems not only forecast future energy
production but also, in real time:

e Analyze deviations between predicted and actual
production;

e Adapt the model based on new incoming data;

e  Optimize the operation of the photovoltaic plant (e.g.,
panel orientation, inverter control, or power
distribution to storage units).

These adaptive systems employ a Reinforcement Learning
approach, where the algorithm continuously interacts with the
environment and “learns” which actions lead to optimal
outcomes in terms of energy efficiency and grid stability.

The advantages of hybrid and intelligent systems are
reflected in:

e Robustness under unstable and rapidly changing
weather conditions;

e Flexibility in application across different geographic
locations and types of power plants;

e  Adaptive learning capability through continuous model
updates with new data;

e Increased forecasting accuracy, achieved by combining
multiple sources of information.

However, their implementation requires:

e Large volumes of high-quality data (meteorological,
operational, and historical);

e High computational power, particularly during the
model training phase;

e  Precise parameter calibration to avoid overfitting.

Despite these challenges, the advantages in accuracy and
stability make hybrid approaches the most reliable solution for
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forecasting energy production in complex and dynamic
environments.

Hybrid and intelligent systems represent an evolutionary
step in the development of predictive technologies in the
energy sector.

Their ability to integrate physical knowledge, statistical
principles, and intelligent algorithms enables the creation of
autonomous, self-learning, and highly efficient models that can
adapt to real operating conditions of photovoltaic power plants

(o101}

In the context of green digital transformation, these systems
play a crucial role, as they enable intelligent energy
management, accurate production planning, and optimized
resource utilization all aimed at achieving a sustainable,
reliable, and low-carbon energy future.

III.

Based on the collected experimental measurements of
meteorological and operational parameters over a three-day
period (Fig.1.), a model for predicting the output power of a
photovoltaic (PV) power plant was developed using the
multivariate linear regression method. The measurements
included the following variables:

MODEL DEVELOPMENT

e Solar radiation (Radiation Average),

e  Module temperature (Temp_Average),
Wind speed (Wind_Speed_Average),
Ambient temperature (Ambient_ Temp Average),

and the corresponding measured output
(P_meas) in megawatts (MW).

power

The goal of the model was to establish a mathematical
relationship between the meteorological parameters and the
generated electrical power, in order to enable short-term
forecasting of energy production under real operating
conditions.

B
P_meas [MW)

D E F
=| Temp_Average (%C) +|Wind Speed_Average (km/h] |+ Ambient Temp_Average (* -
12,983 15 93
129712 1572 933
12,961 17,52 937
12,889 1752 937
128712 17,52 94
12,878 17,52 937
12917 17,52 937
12939 17,52 937
12922 1752 943
12,906 17,52 94
12917 1452 943
12,922 14,52 947
12944 1452 95
12,994 1224 95
13022 1224 9,57
12,956 1344 9,57
12,956 1548 9,57
12,956 1548 96
12,989 1548 963
129712 1392 963

| Radiation_Average (W/m2)
15,0398 243333
14,9598 242333
1755 13,6423 3
13,2687 217,667
13,4612 217333
14,253 228333
13,0408 208667
12,335 198
12,2803 196,333
12,7541 203,667
124562 198,667
12,7029 201,333
12,8157 202,333
130213 205,667
12477 195,333
12141 190,667
12,1252 190
770 12,309
T 122218
115677

193,667
194
183333

Figure 1. Tabular representation of measured parameters

For the analysis, only data collected during daylight hours
(when radiation > 50 W/m?) were used, in order to eliminate
nighttime and transition periods with negligible generation.
Data from the first two days were used for model training,
while the third day served as a test set for verifying prediction
accuracy and robustness.

After applying linear regression, the following predictive
function was obtained:

P= ap+ alGrad+ a2Tmod + a3Vwind T a4Tamb

(M

where the coefficients ao, ai, a», a3 and a4 were calculated
through regression analysis using the training dataset (days 1.
and 2.).

The model was then tested on the third day, comparing the
predicted and measured power outputs, while the data were
processed in Python. The results are shown in Fig. 2. which
clearly demonstrates a high degree of correlation between the
measured and predicted values, with minor deviations observed
during periods of rapid meteorological changes (e.g., passing
clouds).

Measured vs Predicted Power - Day 3
25

20

15

Power (MW)

Time (Day 3)

Figure 2. Multivariate linear regression method Predicted Power — Day 3

This experimental approach demonstrates that even with a
relatively limited dataset (three days), it is possible to develop a
reliable model for short-term power generation forecasting in
photovoltaic systems. Such a model represents an important
step toward the development of intelligent and automated
energy management systems.

In Figure 2, the graph illustrates the measured and predicted
output power of the photovoltaic power plant for the third day
of measurement. The results were obtained using multivariate
linear regression, trained on data from the first two days, while
the third day was used to test the model’s predictive capability.

The x-axis represents the time of day (in hours), while the
y-axis shows the PV system power output in megawatts (MW).
Two curves are displayed — the orange line (Measured Power)
and the blue dashed line (Predicted Power) showing a
comparison between the actual and predicted electrical power
generation during daylight hours.

The results demonstrate a high degree of agreement
between the measured and predicted power values, confirming
the reliability and effectiveness of the linear regression
approach in modeling the relationship between meteorological
parameters (solar radiation, temperature, wind speed, and
ambient temperature) and the PV system output power. The
model successfully followed daily power variations, including
the morning increase after sunrise, the stable midday operation,
and the decline in the late afternoon. Minor deviations are
noticeable during rapid changes in meteorological conditions,
particularly between 10:00—11:00 and around 15:30, which can
be attributed to passing clouds, short-term drops in solar
irradiance, or local microclimatic effects that a linear model
cannot fully capture.
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Quantitatively, the model achieved R? =~ 0.97 and RMSE =
0.9 MW on the test dataset, indicating that it explains over 97%
of the \variability in the actual output power.
This level of accuracy confirms that linear regression, despite
its simplicity, can be highly effective for short-term forecasting
under stable meteorological conditions [4][5][6]. In conclusion,
the presented results demonstrate that the applied model can
accurately reproduce the operational dynamics of the
photovoltaic power plant, making it suitable for integration into
real-time monitoring and forecasting systems for solar energy
production.

In Fig. 3., the relationship between the measured and
predicted output power of the PV power plant over all three
days of measurement is shown. This result was also obtained
using a multivariate linear regression model, which was
previously trained on data from the first two days (training set)
and then tested on the third day (test set).

Measured vs Predicted Power - All 3 Days

50F

-3
o
T

Predicted Power (MW)
w
o

N
o
T

10

1 I L

20 30 40 50
Measured Power (MW)

Figure 3. Multivariate linear regression method Measured vs Predicted Power
—Day 3

For each data point, the predicted power (P_pred) was
calculated based on the measured meteorological parameters.
The figure displays the measured values (P_meas) and the
corresponding predicted values (P_pred), which were paired
and plotted as points on the diagram.

The diagonal dashed black line represents the ideal fit, i.e.,
the case where the predicted power is exactly equal to the
measured power. The plot clearly shows a strong correlation
between the measured and predicted values. The points are
mostly distributed along the diagonal, indicating that the model
successfully reproduced the actual power output of the PV
plant. Small deviations above or below the diagonal correspond
to instances where the model slightly overestimated or
underestimated the output power at certain moments. This
distribution indicates that:

The model has no systematic error (e.g., it is not biased
toward higher or lower values);

The predictions accurately follow the real variations in
power generation;

The deviations are random and minor, confirming the
model’s stability.

Quantitatively, this result is supported by a high coefficient
of determination and a low root mean square error, which
clearly demonstrate that the model explains more than 97% of
the variability in the actual output power.

A. Application of the Random Forest Model

The results of the Random Forest model application are
shown in Fig. 4, where the output power of the photovoltaic
(PV) power plant for the third day of measurement was also
predicted, while the data were processed in Python. Similar to
the previous approach, the Random Forest model was trained
using data from the first two days, while the third day was used
for testing the model’s accuracy, employing the same dataset as
in the linear regression case.

Measured vs Predicted Power - Day 3 (Random Forest)

Power (MW)

Time (Day 3)

Figure 4. Random Forest Model

The fact that the Random Forest algorithm is based on an
ensemble of multiple decision trees enabled the model to
capture nonlinear relationships between the input parameters
and the generated electrical power relationships that linear
regression could not fully represent. In Fig. 4, the orange line
represents the measured power, while the blue dashed curve
shows the predicted power obtained using the Random Forest
model. The two curves almost completely overlap, indicating
that the model achieves very high predictive accuracy
throughout the day and explains about 97.5% of the variations
in output power during the third day. The Random Forest
model successfully tracks and predicts the following patterns,
as visible in the graph: the morning increase in production after
sunrise, the stable operation of the system around midday and
the decline in power during the afternoon hours before sunset.

Minor deviations occur during periods of rapid weather
changes, such as passing clouds or temporary drops in solar
irradiance, where the model may slightly overestimate or
underestimate the actual power output.
However, these deviations are minimal and reflect the natural
variability of meteorological conditions, rather than model
error.

Overall, the Random Forest model has proven to be
extremely robust and accurate in predicting solar energy
production  for  the analyzed three-day  dataset.
Compared to linear regression, RF demonstrates better
generalization capability and more accurately captures complex
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nonlinear dependencies in the data.
The obtained results confirm that Random Forest is an optimal
method for short-term forecasting of PV power plant output,
especially when only a limited amount of measurement data is
available, while maintaining high accuracy and stability even
under variable weather conditions.

B.  Linear regression model

The linear regression model operates by finding the best
possible line (hyperplane) that minimizes the difference
between the actual (measured) and predicted values of the
output power (Fig. 5. And Fig 6.). This difference is expressed
through the mean squared error (MSE). In practical terms, the
model “learns” how the output power changes as
meteorological parameters vary. For example: when solar
radiation increases, the power output rises proportionally; an
increase in module temperature up to a certain point enhances
production, but high temperatures can reduce efficiency; higher
wind speed helps cool the panels, thereby improving
efficiency; while higher ambient temperature generally has a
negative effect, as it increases the system’s thermal load.

Measured vs Predicted Power - Linear Regression (Day 3)

Power (MW)
-
=
=
g
M—
=

Figure 5. Linear regression model

Measured vs Predicted Power (Linear Regression)
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Figure 6. Linear regression model Measured vs Predicted Power — Day 3

The linear model has a limited ability to accurately describe
nonlinear and complex relationships between meteorological
parameters and energy production. In cases of sudden changes
in radiation (such as cloud cover or shading) or complex

temperature effects, the linear model may exhibit deviations in
peak values.

IV. CHALLENGS AND PERSPECTIVES IN FORECASTING
PHOTOVOLTAIC POWER PLANTS

Forecasting electrical energy production from photovoltaic
power plants is a complex task that depends on a wide range of
factors meteorological, technical, and seasonal. The main
challenges in this field arise from the high variability of
weather conditions, the nonlinear relationships between input
and output parameters, and the limitations in the quality and
completeness of available data. Fluctuations in cloud cover,
temperature, and wind speed often lead to sudden changes in
solar irradiance, directly affecting power generation. In
addition, local effects such as shading, panel soiling, and
microclimatic variations which were not considered in this
study, further complicate prediction accuracy, as these
influences cannot be fully represented by standard models.

In cases where only a few days of measurements are
available, as in this study, models such as linear or multiple
linear regression can provide a simple yet reliable
approximation of the relationship between meteorological
parameters and output power. However, when complete annual
measurements are available which is increasingly common
today due to the widespread operation of PV plants over
extended periods it becomes possible to develop more
advanced and robust predictive models. Long-term datasets
enable the analysis of seasonal variations, recognition of daily
and monthly patterns, and inclusion of additional factors that
affect system performance under different conditions. In such
cases, more sophisticated methods such as ensemble models
(Random Forest, XGBoost, LightGBM) or neural networks
(LSTM, CNN-LSTM) can be applied, as they effectively
model nonlinear dependencies and temporal correlations
between variables.

When reliable meteorological forecasts are combined with
historical measurements, predictive systems can be developed
that estimate energy production with relatively high accuracy
over short horizons from several hours up to one day ahead.
However, building a well-trained model capable of accurate
long-term forecasting remains a significant challenge,
especially for prediction horizons extending beyond one, three,
or up to seven days. The accuracy of such forecasts depends
directly on the precision of weather prediction models the
longer the forecast horizon, the greater the uncertainty. While
daily forecasts can achieve very high levels of accuracy (R?
above 0.9), seven-day forecasts tend to focus more on trend
and scenario analysis rather than absolute precision. In this
context, the implementation of hybrid approaches that combine
physical modeling with machine learning represents the most
promising direction for future development, as they allow the
integration of meteorological data, historical measurements,
and weather forecasts into a unified, adaptive system for the
planning and optimization of PV power plant operation.

V.

Forecasting photovoltaic power generation represents a key
component of modern power systems based on renewable
energy sources. This field integrates meteorological
measurements, statistical approaches, and machine learning
techniques to enable efficient planning, grid stability, and

CONCLUSION
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optimization of PV system operation under real-world
conditions. The conducted research demonstrated that even
simple models, such as linear and multiple linear regression,
can achieve high accuracy in short-term forecasting,
particularly when the amount of available data is limited.
Linear regression has proven to be a transparent, reliable, and
computationally efficient tool, suitable for initial analysis
stages and implementation in real-time energy monitoring and
management systems.

However, while linear models successfully describe the
fundamental  relationships  between solar irradiance,
temperature, wind speed, and output power, their limitations
become evident under conditions of pronounced nonlinearity
and dynamic meteorological changes. In this context, the
application of ensemble methods particularly the Random
Forest model has proven to be a superior solution. Random
Forest enables more precise modeling of complex relationships
among input parameters, providing high accuracy and stable
predictions, even under varying cloud cover and temperature
fluctuations. Its robustness, resistance to noise in the data, and
generalization capability make it an optimal choice for short-
term forecasting in PV plants, especially when only a limited
observation window is available.

The results clearly indicate that combining traditional
statistical techniques with modern machine learning methods
can achieve high precision while maintaining model
interpretability. Nevertheless, the future development of solar
energy forecasting is moving toward the use of deep learning
approaches. Convolutional Neural Networks, Long Short-Term
Memory networks, and their hybrid architectures CNN-LSTM
enable modeling of complex spatiotemporal and nonlinear
patterns, making them the foundation of intelligent and
autonomous energy systems. These models not only provide
highly accurate forecasts but also allow adaptive learning and
real-time adjustment to changing environmental conditions.

Within the framework of the green digital transformation,
the integration of advanced predictive models with cloud
infrastructure and the Internet of Things (IoT) enables the
creation of smart grids and digital twins of photovoltaic
facilities. Such systems allow real-time monitoring, analysis,
and optimization of energy production with minimal human
intervention. In this way, the foundation is laid for highly
efficient, self-learning, and sustainable energy ecosystems of
the future, where power generation forecasting is not merely a
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technical task but an integral component of intelligent energy
management and strategic resource planning.
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