

International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

52

Original research paper
UDC 004.432.2:004.42.045

 DOI 10.7251/IJEEC2502052H

Improving the concept of object-oriented

programming in modern programming languages

Jasna Hamzabegović

Faculty of Technical Engineering, University of Bihać, Bihać, Bosnia and Herzegovina

 E-mail address: jasna.hamzabegovic@unbi.ba

Abstract— In software development object-oriented programming (OOP) stands as the principal method because it delivers modular

and scalable and reusable code. The traditional OOP implementation models encounter substantial difficulties when managing intricate

software projects which resulted in the creation of modern programming languages featuring superior OOP characteristics. This

research investigates the modern developments in OOP through assessment of Kotlin together with Rust and Swift along with Scala.

The recent improvement packages include trait-based programming along with pattern matching and immutability and Hybrid

paradigm unification. Evaluation of software updates takes place at an operational level where efficiency boosts alongside improved

robustness and enhanced adaptability receive assessment. Trait-based programming replaces deep inheritance structures, reducing

code maintenance complexity. Program safety increases when using Pattern matching combined with type enforcement and the tool

simplifies if-then decisions and enables concurrent execution and debugging operations. The research presents an in-depth analysis of

new programming language technologies which address classic OOP limitations through higher software development competency

improvements.

Keywords-object-oriented programming, trait-based programming, pattern matching, immutability, functional programming, software

engineering

I. INTRODUCTION

The computer programming model known as object-
oriented programming maintains its industry significance after
its initial introduction during the 1960s. The programming
languages Java and C++ together with Python preserve their
leadership position in the industry because they let developers
encapsulate both object data and behavior. Traditional OOP
approaches that combine inheritance along with polymorphism
generate two maintenance challenges because they connect
code modules and because deep classification details become
intricate to handle. The attempt to reach successful
modularization has proven unsuccessful.

Overly extensive use of inheritance as a fundamental
classical OOP mechanism creates vulnerable base classes that
result in harder maintenance of code. Development teams need
to manage their deep class hierarchy since parent class
modifications can unexpectedly impact the entire child class
structure. While polymorphism together with strict
encapsulation offers remarkable power, they produce code that
becomes more difficult to modify within massive software
development projects. Students have difficulty learning OOP
due to the abstract concepts of inheritance, polymorphism, and
dynamic binding, which are difficult to follow during program
execution [1].

The implementation of OOP faces difficulties when applied
to distributed and multi-threaded computing systems. A large
part of mutable shared state in OOP systems raises parallel

programming complexity which produces race conditions and
deadlocks [2]. The identification of these issues requires
language developers to seek new OOP paradigms and
enhancements by adopting functional programming (FP)
approaches and alternative methods for modular composition.

Programming languages of modern times have created
solutions to tackle these issues though they maintain OOP's
fundamental features. Modern programming languages
introduce four fundamental features that advance the object-
oriented approach — trait-based programming [3], pattern
matching [4], immutability [8], and function-based
architectures integrating OOP and FP concepts [9]. The current
advancements seek to improve OOP by adding features that
increase its flexibility as well as scalability and processing
capacity in modern software development practice. The paper
studies OOP development in contemporary programming
languages through comprehensive analysis of solutions that
solve previous constraints to enhance software development
effectiveness.

II. MATERIAL & METHODS

The research evaluation uses a comparative assessment of
OOP improvements found in Kotlin combined with Rust and
Swift and Scala programming languages. The research
methodology includes three main parts which are: review of
available literature, feature comparison and case studies.

International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

53

A. Literature Review

Multiple academic research papers and industry reports and
whitepapers underwent exhaustive review in order to study
traditional OOP paradigm shortcomings.

1) Limitations of Traditional OOP Paradigms
Traditional OOP receives wide criticism because its deep

inheritance hierarchies together with tight coupling and the
fragile base class problem [11]. Research shows that too much
code dependency on inheritance results in complex
maintainable code because modifications in parents classes
trigger unexpected impacts on child classes. The practice of
bypassing encapsulation in classical OOP occurs when many
programs utilize getter/setter methods which negates the
protective advantages of data hiding.

Traditional OOP receives wide criticism because its deep
inheritance hierarchies together with tight coupling and the
fragile base class problem [11], [12]. Research shows that too
much code dependency on inheritance results in complex
maintainable code because modifications in parent classes
trigger unexpected impacts on child classes [13], [14]. The
practice of bypassing encapsulation in classical OOP occurs
when many programs utilize getter/setter methods, which
negates the protective advantages of data hiding [15], [16].

2) Common Pitfalls in OOP
The research revealed multiple standard problems that

emerge when using OOP such as:

• Deep inheritance chains create complexities that result
in maintenance hurdles together with code stiffness
[10].

• The integration of objects interferes with both
modification attempts and testing procedures.

• When managing shared mutable data in concurrent
applications state mutability creates race conditions
along with deadlock.

3) Advancements in Modern Programming Languages
Programming languages developed in recent times have

brought forward innovative methods to handle the existing
problems. Table 1 presents the main improvements that have
occurred.

TABLE 1: OOP IMPROVEMENTS

Improvement Description Example Languages

Trait-Based

Programming

Replaces inheritance

with modular

components

Scala, Rust

Pattern Matching

Enhances

polymorphism and

reduces complex
conditionals Kotlin, Swift

Immutability

Ensures safer

concurrency and
reduces side effects

Scala, Kotlin

Hybrid Paradigms

Combines OOP with

functional

programming for
flexibility

Swift, Kotlin

The main purpose of this research investigation focused on
building a robust theoretical understanding about fundamental

issues in traditional OOP combined with contemporary
programming language solutions.

B. Feature Comparison

The research examined OOP concepts in Kotlin Rust Swift
and Scala through an organized analysis. The assessment of
each language included multiple crucial elements to determine
how current paradigms enhance code maintainability and
system flexibility and execution speed.

1) Encapsulation and Access Control
Encapsulation functions as the core concept of OOP

because it enables data privacy and permission-based access
supervision. Java and C++ implement their access control
system through private, protected and public modifiers.
Members in Swift and Kotlin have both file-private and
internal access levels to give developers better granularity in
exposure management. Rust runs comprehensive checks on
ownership and borrowing to establish both memory safety and
continuously protect information from accidental modification.

2) Inheritance and Code Reusability
In Different solutions have been used in the implementation

of the latest programming languages which include the
following:

• Traits (behavior unit that defines methods) and mixins
(a mechanism of combining multiple traits into one
class) in Rust and Scala oppose a deep inheritance tree
and depict behaviour organization in favour of
composition instead of inheritance. In the Scala
programming language, the concept of traits enables
multiple inheritance of functionality without conflicts,
which overcomes some of the limitations of the classic
OOP hierarchy [3].

• Protocols with default implementation (for code
reuse) essentially gets you protocol-oriented
programming for Swift.

3) Polymorphism and Type Safety
Poly-morphism of objects in classical OOP means that

whenever type contracts get broken at runtime, we get a
runtime error while allowing instances to act as if they are
representations of parent classes [17]. Modern languages
introduce:

• Kotlin and Scala define pattern matching, which
makes instance of checks and explicit casting
unnecessary and increases type safety.

• Algebraic Data Types (ADTs) in Scala and Rust are
relatively new features that allow for safe type
definitions, while minimizing unforeseen runtime
issues.

4) Immutability and State Management
The fact that the different OOP systems inevitably make

use of mutable state often results in huge problems with
debugging and other concurrent programming processes. This
is handled in modern languages via:

• The default setting of all data structures is immutable
in both Scala and Kotlin unless programmers
explicitly waive this limitation.

Jasna Hamzabegović

54

• Rust enforces data control rules for preventing data
race incidents alongside Swift and Kotlin language
features which enable valuation definitions with
functional properties through their built-in higher-
order functions and “val” keyword implementation.
Fig. 1 illustrates the conceptual contrast between
object-oriented and functional paradigms, showing
how modern languages increasingly blend both
models to achieve safe concurrency and immutable
data flow [10].

Figure 1. Comparison of Object-Oriented Programming (OOP) and

Functional Programming (FP) paradigms [10]

Our evaluation of the research has shown that the modern

OOP adaptations provide greater type safety and lead to easier
maintenance than traditional development paradigms providing
greater flexibility of the system.

C. Case Studies

The research involved multiple case studies to prove how
modern OOP programming methods produce functional
benefits based on their study findings. Various programming
languages and paradigms served as the basis for the case
studies that displayed better software creation and operational
enhancements. The following approaches were used:

1) Traditional OOP Implementation Using Java and C++

Objective:

A normal software application developed through traditional

object-oriented programming in Java and C++ used classic

class inheritance with polymorphism features. The developed

software contained fundamental banking components to

establish new accounts along with money depositions and

withdrawals while performing balance calculations [5], [6],

[7].

• For the Java implementation process the banking
system made use of accounts inheritance to declare
different types of bank accounts (e.g. SavingsAccount,
CheckingAccount) while also using polymorphism to
determine balance calculation methods based on
account types [5],[6].

• The C++ version of the banking system utilized
inheritance and polymorphism mechanisms that were
analogous to the Java version. The program included
base classes and derived classes to display standard
OOP principles in a statically-typed language structure
[7].

Challenges:

• Java together with C++ needed deep inheritance
structures that introduced program complexity which
reduced design flexibility. Modifying the parent class
made developers maintain multiple child classes
through inevitable code maintenance problems.

• The inheritance model-maintained duplication
between classes despite using polymorphism to reduce
it because essential functionality needed a more
effective manner of generalization.

2) Modern OOP with Trait-Based Programming and

Pattern Matching (Kotlin and Swift)

Objective:

• A restatement of the banking system occurred when
developers implemented the same platform again
using modern programming languages Kotlin and
Swift. Modern programming languages implement
traits together with pattern matching which are
combined with immutability features in order to
overcome OOP traditional restrictions [3].

• Kotlin changed the banking system structure through
interface utilization together with higher-order
functionality application. The adoption of Kotlin
interfaces substituted traits in the code and sealed
classes with pattern matching patterns handled various
transaction types.

• Swift protocols together with protocol extensions
implemented the functions that traditional inheritance
would use. The code became more direct through
pattern matching together with immutability because
these features both cut down the need for conditional
statements and mutable state.

Benefits Observed:

• The code reached higher levels of modularity because
interfaces (Kotlin) paired with protocols (Swift)
allowed behavior mixing through inheritance-free
interfaces.

• The type safety of the system improved after Pattern
matching became a standard practice in Kotlin and
Swift development.

• Utilities of immutable data types within these
programming languages generated systems that kept
their side effects to a minimum thus creating
operational simplicity.

3) Functional-OOP Hybrid Programming Using Scala

and Rust

Objective:

The analytic design of a banking system combined FP and

OOP methods through its development using Scala and Rust.

The designers selected these languages because they combined

exemplary features of immutability and functional

programming paradigms alongside OOP structures.

• The banking system implemented with Scala made use
of sealed traits which defined diverse account types
together with transactions. Through its use of
immutability and pattern matching capabilities Scala
enabled the system to operate transactions of different
types with both safety and efficiency.

International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

55

• Rust utilized Enums to specify account types and its
owners’ concepts together with pattern matching
protocols enabled safe memory operation and
prevented processes known as data races.

Benefits Observed:

• The implementation of immutable data types delivered
thread safety to the system because threads never
shared modifiable states thus minimizing concurrent
issues.

• Functional programming concepts which mix with
object-oriented principles have enhanced both code
flexibility and declaration in the system.

III. RESULTS

A. Trait-Based Programming and Mixins

Current implementations of OOP languages require
extensive use of inheritance until problems appear because of
deep class hierarchies and code duplication [18]. The design of
software becomes complicated and difficult to expand through
time when engineers work with this approach. Rust and Scala
have implemented trait-based programming as a substitute to
resolve inheritance problems by providing reusable
components without deep class hierarchies limitations [3] [19].

Outside of interfaces traits enable default method
implementations that provide developers with a flexible
method of composing behaviors in their code. The
implementation removes requirements for numerous
inheritance levels to enable reuse of code. The Scala
programming language allows dynamic trait integration with
classes thus eliminating strict hierarchical limitations.

The code snippet in Listing 1 is written in the Scala
programming language, and demonstrates the basic principle of
"trait-based programming", i.e. using trait as a code reuse
module instead of inheriting from deep classes.

Listing 1. Scala: Trait-Based Programming for Reusable Behavior
trait Logger {

 def log(message: String): Unit = println(s"Log:

$message")

}

class User(val name: String) extends Logger {

 def greet(): Unit = log(s"Hello, $name")

}

The Rust programming language permits developers to
establish shared behavior between distinct types with traits
after assuring memory safety establishes.

Listing 2. Rust: Defining Shared Behavior Using Traits
trait Speak {

 fn say_hello(&self);

}

struct Person;

impl Speak for Person {

 fn say_hello(&self) {

 println!("Hello!");

 }

}

Listing 2 illustrates how Rust defines shared behavior
through traits. The Speak trait declares a reusable interface,
while the Person struct implements it using the impl block
(implementation block), ensuring type safety and memory
safety by design.

“Developers who use traits instead of deep inheritance
methods obtain better structured code that remains flexible and
easy to maintain..

Table 2 clearly shows the shift from a rigid model of
inheritance to a more flexible, modular approach in modern
languages.

Traits and mixins enable code reuse, simpler hierarchies,
greater flexibility, and safer maintenance, thus representing the
evolution of OOP towards a combination of functional
principles.

TABLE 2: COMPARISON OF TRAIT-BASED PROGRAMMING AND MIXINS

Feature Traditional

Inheritance

Traits (Modern

Approach)

Code Reusability

Requires extending

base classes

Allows flexible
composition of

behaviors

Hierarchy Complexity

Leads to deep
inheritance chains

Avoids class hierarchy
depth

Method

Implementation

Inherited methods from

base class

Methods can be

overridden or mixed in

Flexibility

Limited to single or

multiple inheritance

Enables modular and

reusable design

B. Pattern Matching and Algebraic Data Types

 Pattern matching from both Swift and Kotlin produces
polymorphism functionality by cutting down conditional
complexity for better code readability. Since traditional OOP
relies on if-else statements and switch statements to establish
type differences pattern matching provides an organized
mechanism that ensures safe processing.

The primary mechanism within Kotlin for pattern matching
operates through when expressions that enable developers to
conduct strong and secure data type detection. Listing 3 shows
a typical example of an algebraic data type (ADT) in languages
that blend object-oriented and functional programming.

Listing 3. Kotlin: Pattern Matching over a Sealed Class Hierarchy

sealed class Shape

class Circle(val radius: Double) : Shape()

class Rectangle(val width: Double, val height:

Double) : Shape()

fun describe(shape: Shape): String = when (shape) {

 is Circle -> "A circle with radius

${shape.radius}" The research methodology includes

four main parts which are

 is Rectangle -> "A rectangle with dimensions

${shape.width} x ${shape.height}"

}

Scala and Rust manage data in a type-safe way using
Algebraic Data Types (ADTs), permitting developers to define
a finite set of data structures.

Formally, an algebraic data type defines a new type as a
composition of other types or a set of possible constants. A set
of alternatives may be enumerated in a type definition, some of
which may be recursive. For example, a type can be defined for
the four suits of playing cards (spades, hearts, diamonds,
clubs), days of the week, the values in Boolean or in Kleene’s
trivalued logic. The product of these types may also be defined
[9]. The program code in Listing 4 demonstrates algebraic data
type — a form with two variants (sum type), pattern matching
— decomposing values into variants, and type safety and code
readability — without an “if/else” chain, all possible variants
are covered.

Jasna Hamzabegović

56

Listing 4. Rust (enum + match): pattern matching over shape
variants
enum Shape {

 Circle(f64),

 Rectangle(f64, f64),

}

fn describe(shape: Shape) {

 match shape {

 Shape::Circle(r) => println!("Circle with

radius {}", r),

 Shape::Rectangle(w, h) =>

println!("Rectangle of width {} and height {}", w,

h),

 }

}

The combination of pattern matching and ADTs through
pattern-based expressions, which replace poorly constructed
conditional statements, upgrades code expressiveness in a way
that modernizes OOP languages [4], as summarized in Table
3. Programmable expressions eliminate if-else statements to
have codebases that are not only maintainable but more
readable as well. ADTs are statically-typed at compile time,
which means strict data integrity is preserved, providing one
more advantage to preventing run time errors. Implemented
developments benefit developers with higher quality output,
and changes in certain debugging features that aid in
developing reliable software constructs that detail all structural
states and associated behaviour’s for all data structures.

TABLE 3: COMBINATION OF PATTERN MATCHING AND ADTS

Feature Traditional OOP Pattern Matching &

ADTs

Type Handling

Uses instanceof and

type casting

Uses structured pattern-
matching expressions

Safety

Can result in runtime

errors

Ensures compile-time

type safety

Readability

Requires long if-else

chains

More concise and

expressive

C. Immutability and Functional Integration

The biggest challenge of Object Oriented Programming is
Mutable State, as the interaction of complex debugging
scenarios and race conditions leads to unpredictable program
behaviour in the context of multi-threaded systems.
Simultaneous operation of several states results in malfunction
due to their combined action and makes simultaneous
performance harder to carry out without failure. Kotlin and
Scala were OOP languages that easily provided immutability
by preventing changes to assigned data through this
mechanism, thereby preventing changes from altering data.

The concept of separating immutable domain logic from the
mutable state layer, as illustrated in Fig. 2, aligns with the
principles of functional integration discussed in this section.
This architecture isolates side effects and enhances thread
safety, achieving the immutability goals implemented in
languages such as Kotlin and Scala.

Figure 2. Immutable Architecture [8]

For example, Scala ensures program integrity with “val”

declarations that label data constants and disallow mutable
collections while Kotlin does this with immutable data classes.
The combination of top-level functions with higher-order
functions reduce the need for mutable shared state elements
thus more predictable and maintainable code. These modern
software methodologies add robustness into the development
process whilst allowing developers to build scalable, thread-
safe applications with reduced reliance on synchronization.

1) Immutability in Scala and Kotlin
The val is used because Scala immutability principles

dictate that we need to create Immutable variables.

val name: String = "Alice” // Immutable

// name = "Bob" // Error: reassignment not allowed

As Listing 5 shows, Kotlin data classes are immutable by
default.

Listing 5. Kotlin: Immutability in Data Classes
data class User(val name: String,val age: Int)

val user = User("John", 30)

// user.age = 31

// Error: Cannot modify immutable data class

2) Functional Programming Integration
Modern programming languages use higher-order functions
along with pure functions to make applications work without
changing their underlying state. Rust implements data
ownership rules along with borrowing rules to protect against
data races, but Swift and Kotlin allow developers to use
functional data protection methods. A typical example of
functional integration in Swift in Listing 6 shows how pure
functions and immutable collections achieve predictable and
safe behavior without changing state (immutability).

Listing 6. Swift: example of functional integration
let numbers = [1, 2, 3, 4, 5]

let squared = numbers.map {$0 * $0}

print(squared) // [1, 4, 9, 16, 25]

These improvements, including better thread safety, code
predictability, and simplified debugging, are summarized in
Table 4.

TABLE 4. BENEFITS OF IMMUTABLE & FUNCTIONAL OOP

Feature Mutable OOP Immutable &

Functional OOP

Thread Safety

Requires locks &

synchronization

Naturally safe for

concurrency

Code Predictability
Mutable state
introduces side effects

Pure functions avoid
side effects

Debugging Complexity

Harder to track state

changes

More predictable code

behavior

International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

57

D. Hybrid Paradigms (Functional-Object Fusion)

The modern programming ecosystem has a variety of
hybrid languages that can support use OOP but reap the
benefits of FP. Developers gain the ability to produce modular
structures that are highly flexible and easy to maintain (while
exploiting the benefits of both paradigms) through this
combination of paradigms.

Swift and Kotlin are two well-known examples of
languages that integrate OOP and FP. It delivers expression
quality, conciseness, and improved reasonability in code via
first-class functions and higher-order functions (in conjunction
with immutable data structures). These languages allow
developers to use the functional programming principles to
write predictably- and thread-safe structures and preserve the
reusability that OOP brings.

Kotlin integrates functional programming through higher-
order functions and lambdas in a way that feels very natural to
its overall object-oriented structure. With this method, the
programmers can write more concise and compact code. The
modularity of the blocks of code that higher-order functions
generate gives some flexibility that keeps the essential OOP
organizational structure intact.

Listing 7. Kotlin: higher-order function implementation
class Calculator {

 fun operate(a: Int, b: Int, operation: (Int,

Int) -> Int): Int {

 return operation(a, b)

 }

}

val calc = Calculator()

val sum = calc.operate(5, 3) { x, y -> x + y }

println(sum) // Output: 8

Listing 7 shows how functional programming can be
implemented with OOP to make things run easier and code
simpler.

The language presents developers with the ability to unify
OOP methods and functional programming techniques using
closures and protocols which produce short and reusable lines
of code that retain clear object-oriented abstractions. Swift
protocols present an interface pattern that supports default
implementations which let developers construct polymorphic
patterns that serve both FP and OOP design goals.

1) Main advantages of integrating OOP and FP
The combination of OOP and FP elements during the

hybrid development grant developers the privilege to tap into
the strengths that each programming paradigm has to offer. The
ideal combo of FP immutable data structures and OOP's
systematic structure to keep complex systems in check FP's
pure functions to minimize side effects of program behaviour
plenty of programming advantages come forth from this
approach! This hybrid approach allows seamless maintenance
as well as scalability, leading to better modular design and
programmable composition [see Table 5].

TABLE 5. KEY FEATURES OF HYBRID OOP-FP PARADIGMS

Feature Traditional OOP Hybrid OOP-FP

Code Style Focus on class-based

hierarchy

Mixes functions with

objects, enabling
flexible code blocks

State Handling Emphasizes mutable

state, which can lead to

Encourages

immutability and

side effects functional purity to
avoid side effects

Flexibility Rigid class structures

with tightly coupled

components

More modular,

composable, and

adaptable to changes

Concurrency Often requires complex

synchronization

mechanisms

Immutable state and

pure functions ensure

thread-safety without
locks

2) Real-World Application and Benefits
The using object-oriented programming juxtaposition with

functional programming enables programmers to write code
which is maintainable along their brevity, customization and
simplicity to modify as per changing needs. This facilitate
functional execution (callback operations and promises), that is
passing functions as arguments or in other words using a
higher-order functions and closures, while still respecting OOP
principles.

It also makes concurrency better. One particularly
powerful feature of functional programming is immutable
state, which eliminates the salting effect of shared mutable
state that provides the majority of race conditions and
deadlocks when running code in a multi-threaded manner.
Swift and Kotlin have merged paradigms, combining
functional and object-oriented features, allowing developers to
leverage safety and efficiency while also providing the
scalability needed for programming language development.

The Modern programming languages evolve due to the
adoption of the OOP constraints solution that helps create
more easily maintainable systems, that is more efficient in
terms of security and that can scale far beyond the boundaries
of complexity and concurrency.

E. Concurrency and State Isolation in Modern OOP-FP
Systems

To empirically demonstrate the differences between
traditional OOP and modern paradigms, a comparative analysis
of implementations in several programming languages was
conducted. Table 6 presents a structured overview of common
concurrency problems, corresponding language-level
mechanisms, and their effects on execution safety and
performance. Code listings following the table illustrate how
modern paradigms eliminate race conditions and deadlock
scenarios without relying on explicit locks..

TABLE 6. OOP CONCURRENCY PROBLEMS AND MODERN SOLUTIONS

Problem in

OOP systems

Language

solution /

mechanism

Effect on

competitiveness

Examples of

language /

techniques

Shared mutable
state)

Immutability
by default,

immutable

collections

Eliminates the
need for locks,

enables

deterministic
behavior

Scala (val, List),
Kotlin (val, List),

Swift (let, struct)

Races when

accessing
facilities (race

conditions)

Actors /

Message
passing

Sequentializes

access to state
without explicit

locks

Kotlin

Coroutines
Channel, Akka

(Scala), Swift

actor, Rust
tokio::mpsc

Deadlock due to

multiple locks

Structured

Concurrency
i async/await

Avoids circular

waiting and
deadlock

scenarios

Swift

Concurrency
(async let,

TaskGroup),

Jasna Hamzabegović

58

Rust async/await,

Kotlin

coroutineScope

Unpredictable

synchronization
and complex

debugging

Ownership /

Borrowing
model

It statically

prevents data
races and ensures

safe concurrency

Rust (Send,

Sync, borrow
checker`)

Difficulty
maintaining

hierarchies and

sharing state
between

instances

Composition
over

inheritance;

Traits /
Protocols

Reduces coupling
and facilitates

modular testing

Scala traits,
Swift protocols,

Rust traits

State changes

during

multithreading

(inconsistency)

Pure

functions +

state

reduction

(event →

state)

Deterministic
state

transformation,

without side-

effects

Kotlin
Flow.scan, Swift

Combine.scan,

Redux-like

models

The need for

complex data

synchronizations

Software

Transactional

Memory
(STM) ili

atomic

references

Guarantees

composability

and elimination
of deadlocks

Clojure STM,

Haskell STM,

AtomicReference
in Kotlinu

Opaque
mutation

through aliases
and references

Value
semantics /

Copy-on-
write

Limits access to
mutable objects,

makes state local

Swift struct
(value type),

Kotlin data class
s copy()

Modern hybrid languages demonstrate that concurrency

safety is achieved not by adding synchronization primitives,

but by redesigning state management and isolation at the

language level.

The following code fragments illustrate selected

mechanisms from Table 6 implemented in Kotlin, Rust, and

Swift. As shown in Listing 1, messages are processed

sequentially, no shared state or locking.

Listing 1. Kotlin: sequential processing without locks

class AccountActor(val id: Int, scope:

CoroutineScope) {

 private var balance = 0L

 val inbox = Channel<Msg>(Channel.UNLIMITED)

 init {

 scope.launch {

 for (m in inbox) when (m) {

 is Deposit -> balance += m.a

 is Xfer ->

BankBus.accounts[m.to]?.inbox?.send(Deposit(m.a))

 }

 }

 }

}

Listing 2 demonstrates Rust’s ownership and borrowing

mechanism to statically prevents data races.

Listing 2. Rust (Tokio mpsc): statically prevents data races

enum Msg { Deposit(u64), Xfer { to: usize, amt: u64

} }

async fn run(mut bal: u64, mut rx:

mpsc::Receiver<Msg>, peers: Vec<mpsc::Sender<Msg>>)

{

 while let Some(m) = rx.recv().await {

 match m {

 Msg::Deposit(a) => bal += a,

 Msg::Xfer { to, amt } => {

 bal -= amt;

 let _ =

peers[to].send(Msg::Deposit(amt)).await;

 }

 }

 }

}

The Swift implementation in Listing 3 ensures state isolation

through actors, which guarantee a sequential access — there

are no explicit locks or race conditions.

Listing 3. Swift Concurrency: Isolated state with no deadlocks

actor Account {

 private var balance = 0

 func deposit(_ a: Int) { balance += a }

 func withdraw(_ a: Int) { balance -= a }

}

actor Bank {

 private var acc: [Int: Account] = [:]

 func transfer(from s: Int, to d: Int, a: Int)

async {

 guard let src = acc[s], let dst = acc[d]

else { return }

 await src.withdraw(a); await dst.deposit(a)

 }

}

All three implementations avoid explicit locks. Kotlin and

Swift achieve safety via actors and structured concurrency,

while Rust enforces race-freedom at compile time through

ownership and message passing. As summarized in Table 7,

actor-based and value-type paradigms maintain concurrency

safety by design. Modern hybrid languages (Kotlin, Swift,

Rust) achieve deterministic behavior without explicit

synchronization, simplifying debugging and improving

scalability.

TABLE 7. COMPARATIVE METRICS OF CONCURRENCY SAFETY

Access Locks State

mutabil

ity

Risk of

deadlock

Stability /

testability

Note

Java
(classic
synchroniz
ed)

2 High High Low The need
for manual
locking and
access
sequencing

Kotlin
(actor +
Channel)

0 Low
(local
state)

Low High Messages
instead of
locks

Rust (Tokio
mpsc)

0 Low
(owners
hip)

Low High Borrow
checker
eliminates
races

Swift
(actors)

0 Low Low High Isolated
state and
sequential
await

Kotlin
(Flow +
ADT)

0 Very
low
(unchan
ged)

Low High Determinis
tic flow
without
side-effects

Swift
(Combine +
struct)

0 Very
low
(value-
semantic
s)

Low High Value-
types
instead of
shared state

IV. DISCUSSION

The study provides conclusive evidence about modern
programming languages which have solved traditional OOP
limitations through advanced enhancements. The innovative
features of trait-based programming together with pattern
matching and immutability provide strong answers to the built-
in difficulties within classical OOP through the fusion of

International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

59

functional programming with object-oriented programming.
The recent improvements in OOP through the resolution of
deep inheritance chains and mutable states together with
polymorphism complexity have transformed the paradigm into
a better solution for contemporary software development
through enhanced modularity and scalability and improved
maintainability.

1) Trait-Based Programming
Code reuse in OOP normally depends on inheritance as its

main mechanism yet produces inflexible system structures that
restrict future development capabilities. The usage of this
method produces highly connected classes and introduces
hurdles to software expansion that simultaneously generates
unexpected side effects. The programming languages Rust and
Scala have combined to present trait-based programming as a
solution that replaces the requirements for deep inheritance
hierarchies. Traits provide programmers with a mechanism to
add functionality to classes through modular design techniques.
The implementation of traits as behavior components among
developers leads to reduced object dependencies and promotes
loose coupling style in software [20].

The Scala programming language enables methods
inheritance from multiple traits through traits which prevents
users from creating intricate inheritance structures since they
can combine diverse behaviors into a single class. The
maintenance and flexibility of designs significantly improve
when using this method even though traditional inheritance
models did not enable the same advanced features.

2) Pattern Matching and Algebraic Data Types
Pattern matching and ADTs are a huge leap because they

greatly enhance type safety and expressiveness over OOP.
Common OOP polymorphism is based on type casting and
instance of checks for implementation but both these methods
throw errors which lead to runtime failures. Pattern matching
allows developers to define value comparisons using
declarative pattern sets within a security programming
framework. Kotlin and Swift pattern matching helps
programmers as this language feature leads to better
polymorphism through an expressive statement pattern that led
away from long and bug-prone if-else blocks.

ADTs act as a safeguard for developers to create and
manipulate complex data structures. ADTs define all the states
a data structure can take and this prevents illegal states thus
improving safety and reducing runtime errors. Being able to
pattern match exhaustively (Rust Enums combined with Scala
sealed classes) means that every case can be caught at compile
time, which translates into fewer errors in the code itself.

Fig. 3 demonstrates how an Abstract Data Type (ADT) hides

internal data structures (like arrays, linked lists) using public and

private functions, exposing only a defined interface to the application

program.

Figure 3. ADT Works [21]

The merge of pattern matching with ADTs enables

developers to make their code both readable and maintainable
since they do not have to manage difficult type structures while
focusing on object behavior control. The additional features
enhance debugging capabilities because developers receive
instant verification about mismatches or missing cases while
performing compilation.

3) Immutability and Functional Programming Integration
In modern OOP languages such as Scala and Kotlin,

immutability is promoted as the solution to the issue caused by
mutable state. Unexpected effects like races and deadlocks as
well as unanticipated responses happen from the storage of
mutable data in concurrent systems. Modern programming
languages establish immutability as the default gross settings,
ensuring that assigned values are modification recall and
immutable behaviour thus resulting in consistency and thread
safe behaviour.

Since multi-threaded environments do not have any
complex resource synchronizing mechanism to keep their data
safe from a change, immutability makes data safe by making it
non-modifiable. Immutable data enhances program clarity
because it enables developers to observe side effects more
clearly as well as diminishes the chance of bugs arising from
unintended state modifications.

The implementation of pure functions alongside higher-
order functions from functional programming yields code
which becomes clearer along with being easier to modularize.
The programming paradigm with functional characteristics
helps programmers create transformations and compositions to
manage data flow while properly ensuring that state mutations
remain out of their concern. Through Kotlin and Scala
developers gain access to a powerful programming
combination that lets them use OOP structure together with
functional programming flexibility.

4) The Fusion of OOP and FP
Developers now have the advantage of flexible

development through the combination of functional
programming with OOP because this allows them to select the
paradigm which best meets their development requirements.
The Swift and Kotlin are two such emerging programming
languages that create a powerful synergy between the OOP
object abstraction capabilities and the rich expressiveness and
composability from FP. This dual-paradigm structure allows
developers to switch between the two programming paradigms
based on their current needs while creating clean maintainable
and extensible code.

Jasna Hamzabegović

60

This enables designers to cover their complex state
requirements through objects using OOP methods, but perform
pure computations and concurrency in a manner similar to FP,
while composing behaviours with side-effect free expressions.
It shows an excellent fit for the transformation of large-scale
systems as it offers flexible scalability features, while
maintaining robust maintainability characteristics.

Modern programming languages, software developers are
able to reap the benefits invisible from both OOP and FP
paradigms in a single effort and therefore, create higher-
performing and more scalable software frameworks. Through
hybrid paradigms developers get the opportunity to write more
efficient and cleaner code with less complexity through
conventional OOP limitations. The combination of OOP and
FP paradigms allows for the development of systems that are
simultaneously modular, flexible, and easier to maintain [22].

5) Practical Verification of Concurrency Safety
The empirical results presented in Section III provide

practical confirmation of the theoretical assumptions
introduced in earlier parts of the paper.

Modern OOP-FP languages such as Kotlin, Rust, and Swift
successfully address long-standing concurrency problems
inherent to traditional OOP systems — shared mutable state,
race conditions, and deadlocks — through built-in language
mechanisms rather than external synchronization constructs.

Actors and structured concurrency in Kotlin and Swift,
together with Rust’s ownership and borrowing model, ensure
deterministic message sequencing, state isolation, and compile-
time prevention of data races.

This practical verification supports the central thesis of the
paper: that hybrid paradigms combining object-oriented and
functional concepts not only improve code modularity and
expressiveness but also achieve safe, scalable concurrency by

design.

V. CONCLUSION

Empirical verification through Kotlin, Swift, and Rust

implementations confirms that modern programming

languages achieve concurrency safety without shared mutable

state. This represents a major advancement in the evolution of

object-oriented programming (OOP), moving toward

deterministic, reliable, and maintainable parallel systems.
Modern extensions of OOP mark a new era in software

design. Traditional OOP has long faced challenges in
scalability and maintainability while attempting to maintain
flexibility in large-scale, parallel environments. However,
through the integration of trait-based programming, pattern
matching, and immutability—key concepts drawn from the
functional programming paradigm—modern languages have
substantially enhanced OOP’s capabilities and resolved many
of its longstanding limitations.

Modern applications using trait-based programming, have
effectively eliminated inheritance as a traditional base so that
developers can create repositionable modules which do not
require long inheritance paths, Software developers are
enjoying greater flexibility and maintainability as the
convoluted hierarchy-inheritance structures have moved to
simple reusable traits or protocols. Features like traits of Scala
and Rust add balance to the flexibility of a codebase to evolve
over time (adding new behaviour with minimal dependencies

Today, most OOP frameworks rely on type casting and
instance of checks among others to run well however these
mechanisms generate runtime vulnerabilities but significantly
hamper their safety levels. In addition to type safety and
brevity, pattern matching systems generate human readable
code. Through the use of ADTs the system allows only correct
data structure states preventing runtime errors and making the
developed software more reliable. The new features help
improve the reliability of programs by providing stronger
ways of expressing both data types and control flow paths in a
more secure and less cumbersome way.

The object-oriented programming principles together with
functional programming features which Swift and Kotlin have
give developers capabilities to create clear and self-explanatory
code. Modern languages allow developers to leverage best
features from OOP and FP due to their unified implementation
of strong object abstraction with structural design and
composability and immutability capabilities. Through this
combination of paradigms developers achieve complete
flexibility because they can select between programming
paradigms for each task. Developers should use OOP to
address complex state and behavior through objects yet take
advantage of FP techniques to create pure code without side
effects that enhances testing and maintenance. As Amin et al.
[20] point out, understanding the personality traits of software
programmers can support the design of educational and
development tools tailored to different cognitive styles, which
further reinforces the need for more flexible programming
paradigms.

The current advancements to object-oriented programming
make it much more beneficial for developing modern software.
Modern programming languages solve traditional OOP flaws
which include deep inheritance structure and mutable objects
and tight class coupling so developers can produce better
maintainable solutions. Modern OOP becomes more suitable
for current software demands while serving as a working base
for development of applications that scale efficiently and
ensure thread safety and modularity. The development of OOP
software depends on the effective fusion between OOP and
functional programming to produce safer and cleaner
applications. The next research direction should analyze how to
improve such enhancements in OOP and establish their
integration with current development practices for ensuring
OOP's capability to handle modern complex software demands.

The presented comparative implementations and metrics
confirm that modern hybrid programming languages achieve
concurrency safety through design principles rooted in
functional immutability and object encapsulation.

By integrating message passing, ownership semantics, and
value-based state management, these languages demonstrate
that theoretical models of safe parallelism can be effectively
applied in practice. This convergence between theory and
implementation marks a significant step in the evolution of
object-oriented programming — from imperative
synchronization to declarative, deterministic concurrency.

REFERENCES

[1] J. Yang, Y. Lee, D. Hicks and K. Chang, “Enhancing object-oriented
programming education using static and dynamic visualization,” Proc.
IEEE Frontiers in Education Conf. (FIE), pp. 1–5, 2015, https://doi:
10.1109/FIE.2015.7344152

[2] S. Srinivasan, A. Mycroft and J. Vitek, “Kilim: Isolation-typed actors for
Java – A million actors, safe zero-copy communication,” in Proc.
ECOOP 2008 – Object-Oriented Programming: 22nd European Conf.,

International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

61

vol. 5142, pp. 104–128, Springer, Berlin, Germany, 2008, doi:
10.1007/978-3-540-70592-5_6.

[3] V. P. D. Layka and D. Pollak, “Traits,” in Beginning Scala, pp. 121–
132, Apress, 2015, https://doi: 10.1007/978-1-4842-0232-6_7

[4] S. Ryu, C. Park and G. L. Steele, Jr., “Adding pattern matching to
existing object-oriented languages,” Journal of Object Technology, vol.
9, no. 3, pp. 75–99, 2010, https://doi: 10.5381/jot.2010.9.3.a3

[5] P. Deitel and H. Deitel, Java How to Program: ATM Case Study Part 2
– Implementing the Design, Pearson Education, 2017. [Online].
Available:
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-
college-open-resources/deitel-como-programar-en-java/como-
programar-en-java-1e-espcaps-en-linea/capitulo-
34.pdf?sfvrsn=525fd2b2_2

 [6] “ATM Case Study, Part 1: Object-Oriented Design with the UML,”
ATM Case Study, Deitel Series, Pearson, 2017. [Online]. Available:
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-
college-open-resources/deitel-como-programar-en-java/como-
programar-en-java-1e-espcaps-en-linea/capitulo-
33.pdf?sfvrsn=465fd2b2_2

[7] M. Twain, Object-Oriented Software Design and Java Programming:
Chapter 13 – ATM Case Study Part 2 – Implementing an Object-
Oriented Design, University of Birmingham Press, 2018. [Online].
Available: https://www.studocu.com/en-gb/document/university-of-
birmingham/object-oriented-software-design-and-java-
programming/chapter-13-atm-case-study-part-2-implementing-an-
object-oriented-design/4437434

 [8] V. Khorikov, “Immutable architecture,” Enterprise Craftsmanship,
2016. [Online]. Available:
https://enterprisecraftsmanship.com/posts/immutable-architecture/
Accessed: May 7, 2025.

[9] V. Torra, Scala: From a Functional Programming Perspective—An
Introduction to the Programming Language. Cham, Switzerland:
Springer, 2016, https://doi: 10.1007/978-3-319-46481-7

[10] S. Melkonyan, “Object-oriented programming (OOP) vs functional
programming (FP),” Flux Technologies Blog, 2023. [Online]. Available:
https://fluxtech.me/blog/object-oriented-programming-vs-functional-
programming/

[11] A. Sabané, Y.-G. Guéhéneuc, V. Arnaoudova and G. Antoniol, “Fragile
base-class problem, problem?,” Empirical Software Engineering, vol.
22, no. 5, pp. 2310–2345, 2017, https://doi: 10.1007/s10664-016-9497-3

[12] S.H. Tee, “Problems of inheritance at Java inner class,” arXiv preprint,
arXiv:1301.6260, 2013. [Online]. Available:
https://arxiv.org/abs/1301.6260

[13] Naukri Code 360, “Disadvantages of inheritance in Java,” 2023.
[Online]. Available:
https://www.naukri.com/code360/library/disadvantages-of-inheritance-
in-java

[14] CodiLime, “Decoding inheritance: An insight into the use and misuse,”
2023. [Online]. Available: https://codilime.com/blog/decoding-
inheritance-use-and-misuse

[15] M. Skoglund, “A survey of the usage of encapsulation in object-oriented
programming,” Department of Computer and Systems Sciences,
Stockholm University / Royal Institute of Technology, Stockholm,
Sweden, 2003. [Online]. Available:
https://www.researchgate.net/publication/228543013_A_survey_of_the_
usage_of_encapsulation_in_object-oriented_programming

[16] Y.Y. Zhuang, W. Kuo and S.C. Tseng, “Resolving the Java
representation exposure problem with an AST-based deep copy and
flexible alias ownership system,” Electronics, vol. 13, no. 2, 350, 2024,
https://doi: 10.3390/electronics13020350

[17] J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones and A.
Spiwack, “Linear Haskell: Practical linearity in a higher-order
polymorphic language,” Proc. ACM on Programming Languages
(POPL), vol. 2, Art. 5, pp. 1–29, 2017, https://doi: 10.1145/315809

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Entwurfsmuster als Elemente wiederverwendbarer objektorientierter
Software, Bonn, Germany: MITP-Verlags GmbH & Co. KG, 2015.

[19] The Rust Programming Language, “Traits: Defining shared behavior,”
[Online]. Available: https://doc.rust-lang.org/book/ch10-02-traits.html.
Accessed: Apr. 13, 2025.

[20] A. Amin, M. Rehman, R. Akbar, S. Basri and M. F. Hassan, “Trait-
based personality profile of software programmers: A study on
Pakistan’s software industry,” in Proc. 8th Int. Conf. Intelligent Systems,
Modelling and Simulation (ISMS), pp. 90–94, IEEE, 2018, https://doi:
10.1109/ISMS.2018.00026

[21] GeeksforGeeks, “Abstract data types,” 2025. [Online]. Available:
https://www.geeksforgeeks.org/abstract-data-types/. Accessed: Jun. 1,
2025.

[22] B. M. D. de Sousa, R. C. Ferreira, and A. Goldman, “Functional vs.
Object-Oriented: Comparing How Programming Paradigms Affect the
Architectural Characteristics of Systems,” arXiv preprint
arXiv:2508.00244, 2025.

Jasna Hamzabegović is an Associate
Professor at the Faculty of Technical
Sciences, University of Bihać, Bosnia
and Herzegovina. She received her B.Sc.
degree in Informatics from the
University of Sarajevo, the M.Sc. degree
in Computer Science and Informatics
from the University of East Sarajevo, and
the Ph.D. degree in Technical Sciences
from the University of Bihać in 2014.

Her research interests include educational software
development, digital literacy, game-based learning, and user-
centered applications for vulnerable populations.

Dr. Hamzabegović has authored or co-authored approximately
40 scientific and professional publications and is the co-author
of the university textbook Object-Oriented Programming with
C++. She has participated in several international projects in the
areas of innovative education and digital transformation and
serves as a reviewer for international conferences. She is
currently the Head of the Department of Electrical Engineering
at the Faculty of Technical Sciences, University of Bihać.

https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://enterprisecraftsmanship.com/posts/immutable-architecture/
https://fluxtech.me/blog/object-oriented-programming-vs-functional-programming/
https://fluxtech.me/blog/object-oriented-programming-vs-functional-programming/
https://arxiv.org/abs/1301.6260?utm_source=chatgpt.com
https://www.naukri.com/code360/library/disadvantages-of-inheritance-in-java?utm_source=chatgpt.com
https://www.naukri.com/code360/library/disadvantages-of-inheritance-in-java?utm_source=chatgpt.com
https://codilime.com/blog/decoding-inheritance-use-and-misuse?utm_source=chatgpt.com
https://codilime.com/blog/decoding-inheritance-use-and-misuse?utm_source=chatgpt.com
https://www.researchgate.net/publication/228543013_A_survey_of_the_usage_of_encapsulation_in_object-oriented_programming?utm_source=chatgpt.com
https://www.researchgate.net/publication/228543013_A_survey_of_the_usage_of_encapsulation_in_object-oriented_programming?utm_source=chatgpt.com
https://doc.rust-lang.org/book/ch10-02-traits.html
https://www.geeksforgeeks.org/abstract-data-types/

