I_l E E C International Journal of Electrical Engineering and Computing
Vol. 9, No. 2 (2025)

Original research paper
UDC 004.432.2:004.42.045
DOI 10.7251/1JEEC2502052H

Improving the concept of object-oriented
programming in modern programming languages

Jasna Hamzabegovié¢

Faculty of Technical Engineering, University of Biha¢, Biha¢, Bosnia and Herzegovina

E-mail address: jasna.hamzabegovic@unbi.ba

Abstract— In software development object-oriented programming (OOP) stands as the principal method because it delivers modular
and scalable and reusable code. The traditional OOP implementation models encounter substantial difficulties when managing intricate
software projects which resulted in the creation of modern programming languages featuring superior OOP characteristics. This
research investigates the modern developments in OOP through assessment of Kotlin together with Rust and Swift along with Scala.
The recent improvement packages include trait-based programming along with pattern matching and immutability and Hybrid
paradigm unification. Evaluation of software updates takes place at an operational level where efficiency boosts alongside improved
robustness and enhanced adaptability receive assessment. Trait-based programming replaces deep inheritance structures, reducing
code maintenance complexity. Program safety increases when using Pattern matching combined with type enforcement and the tool
simplifies if-then decisions and enables concurrent execution and debugging operations. The research presents an in-depth analysis of
new programming language technologies which address classic OOP limitations through higher software development competency
improvements.

Keywords-object-oriented programming, trait-based programming, pattern matching, immutability, functional programming, software
engineering

I. INTRODUCTION programming complexity which produces race conditions and
deadlocks [2]. The identification of these issues requires
language developers to seek new OOP paradigms and
enhancements by adopting functional programming (FP)
approaches and alternative methods for modular composition.

The computer programming model known as object-
oriented programming maintains its industry significance after
its initial introduction during the 1960s. The programming
languages Java and C++ together with Python preserve their
leadership position in the industry because they let developers Programming languages of modern times have created
encapsulate both object data and behavior. Traditional OOP solutions to tackle these issues though they maintain OOP's
approaches that combine inheritance along with polymorphism fundamental features. Modern programming languages
generate two maintenance challenges because they connect introduce four fundamental features that advance the object-

code modules and because deep classification details become oriented approach — trait-based programming [3], pattern
intricate to handle. The attempt to reach successful — matching [4], immutability [8], and function-based
modularization has proven unsuccessful. architectures integrating OOP and FP concepts [9]. The current

advancements seek to improve OOP by adding features that
increase its flexibility as well as scalability and processing
capacity in modern software development practice. The paper
studies OOP development in contemporary programming
languages through comprehensive analysis of solutions that
solve previous constraints to enhance software development

Overly extensive use of inheritance as a fundamental
classical OOP mechanism creates vulnerable base classes that
result in harder maintenance of code. Development teams need
to manage their deep class hierarchy since parent class
modifications can unexpectedly impact the entire child class
structure. While polymorphism together with strict

encapsulation offers remarkable power, they produce code that effectiveness.

becomes more difficult to modify within massive software

development projects. Students have difficulty learning OOP II. MATERIAL & METHODS

due to the abstract concepts of inheritance, polymorphism, and The research evaluation uses a comparative assessment of
dynamic binding, which are difficult to follow during program QOP improvements found in Kotlin combined with Rust and
execution [1]. Swift and Scala programming languages. The research

The implementation of OOP faces difficulties when applied ~ methodology includes three main parts which are: review of
to distributed and multi-threaded computing systems. A large ~ available literature, feature comparison and case studies.
part of mutable shared state in OOP systems raises parallel

52

IJEEC

International Journal of Electrical Engineering and Computing

Vol. 9, No. 2 (2025)

A. Literature Review

Multiple academic research papers and industry reports and
whitepapers underwent exhaustive review in order to study
traditional OOP paradigm shortcomings.

1) Limitations of Traditional OOP Paradigms

Traditional OOP receives wide criticism because its deep
inheritance hierarchies together with tight coupling and the
fragile base class problem [11]. Research shows that too much
code dependency on inheritance results in complex
maintainable code because modifications in parents classes
trigger unexpected impacts on child classes. The practice of
bypassing encapsulation in classical OOP occurs when many
programs utilize getter/setter methods which negates the
protective advantages of data hiding.

Traditional OOP receives wide criticism because its deep
inheritance hierarchies together with tight coupling and the
fragile base class problem [11], [12]. Research shows that too
much code dependency on inheritance results in complex
maintainable code because modifications in parent classes
trigger unexpected impacts on child classes [13], [14]. The
practice of bypassing encapsulation in classical OOP occurs
when many programs utilize getter/setter methods, which
negates the protective advantages of data hiding [15], [16].

2) Common Pitfalls in OOP
The research revealed multiple standard problems that
emerge when using OOP such as:

e Deep inheritance chains create complexities that result
in maintenance hurdles together with code stiffness

[10].

The integration of objects interferes with both
modification attempts and testing procedures.

When managing shared mutable data in concurrent
applications state mutability creates race conditions
along with deadlock.

3) Advancements in Modern Programming Languages
Programming languages developed in recent times have
brought forward innovative methods to handle the existing
problems. Table 1 presents the main improvements that have
occurred.

TABLE 1: OOP IMPROVEMENTS

Improvement Description Example Languages

Trait-Based
Programming

Replaces inheritance
with modular
components

Scala, Rust

Enhances
polymorphism and
reduces complex
conditionals

Pattern Matching Kotlin, Swift

Ensures safer
concurrency and
reduces side effects

Immutability Scala, Kotlin

Combines OOP with
functional
programming for
flexibility

Hybrid Paradigms Swift, Kotlin

The main purpose of this research investigation focused on
building a robust theoretical understanding about fundamental

issues in traditional OOP combined with contemporary
programming language solutions.

B. Feature Comparison

The research examined OOP concepts in Kotlin Rust Swift
and Scala through an organized analysis. The assessment of
each language included multiple crucial elements to determine
how current paradigms enhance code maintainability and
system flexibility and execution speed.

1) Encapsulation and Access Control

Encapsulation functions as the core concept of OOP
because it enables data privacy and permission-based access
supervision. Java and C++ implement their access control
system through private, protected and public modifiers.
Members in Swift and Kotlin have both file-private and
internal access levels to give developers better granularity in
exposure management. Rust runs comprehensive checks on
ownership and borrowing to establish both memory safety and
continuously protect information from accidental modification.

2) Inheritance and Code Reusability
In Different solutions have been used in the implementation
of the latest programming languages which include the
following:

e Traits (behavior unit that defines methods) and mixins
(a mechanism of combining multiple traits into one
class) in Rust and Scala oppose a deep inheritance tree
and depict behaviour organization in favour of
composition instead of inheritance. In the Scala
programming language, the concept of traits enables
multiple inheritance of functionality without conflicts,
which overcomes some of the limitations of the classic
OOP hierarchy [3].

Protocols with default implementation (for code
reuse) essentially gets you protocol-oriented
programming for Swift.

3) Polymorphism and Type Safety

Poly-morphism of objects in classical OOP means that
whenever type contracts get broken at runtime, we get a
runtime error while allowing instances to act as if they are
representations of parent classes [17]. Modern languages
introduce:

e Kotlin and Scala define pattern matching, which
makes instance of checks and explicit casting

unnecessary and increases type safety.

Algebraic Data Types (ADTs) in Scala and Rust are
relatively new features that allow for safe type
definitions, while minimizing unforeseen runtime
issues.

4) Immutability and State Management
The fact that the different OOP systems inevitably make
use of mutable state often results in huge problems with
debugging and other concurrent programming processes. This
is handled in modern languages via:

e The default setting of all data structures is immutable
in both Scala and Kotlin unless programmers

explicitly waive this limitation.

53

Jasna Hamzabegovié¢

Rust enforces data control rules for preventing data
race incidents alongside Swift and Kotlin language
features which enable valuation definitions with
functional properties through their built-in higher-
order functions and “val” keyword implementation.
Fig. 1 illustrates the conceptual contrast between
object-oriented and functional paradigms, showing
how modern languages increasingly blend both
models to achieve safe concurrency and immutable

data flow [10].
/
e
N\,
s | (oom) /
/ =~ (%)
& = "
N

Figure 1. Comparison of Object-Oriented Programming (OOP) and
Functional Programming (FP) paradigms [10]

Our evaluation of the research has shown that the modern
OOP adaptations provide greater type safety and lead to easier
maintenance than traditional development paradigms providing
greater flexibility of the system.

C. Case Studies

The research involved multiple case studies to prove how
modern OOP programming methods produce functional
benefits based on their study findings. Various programming
languages and paradigms served as the basis for the case
studies that displayed better software creation and operational
enhancements. The following approaches were used:

1) Traditional OOP Implementation Using Java and C++

Objective:
A normal software application developed through traditional
object-oriented programming in Java and C++ used classic
class inheritance with polymorphism features. The developed
software contained fundamental banking components to
establish new accounts along with money depositions and
withdrawals while performing balance calculations [5], [6],
[7].
e For the Java implementation process the banking
system made use of accounts inheritance to declare
different types of bank accounts (e.g. SavingsAccount,
CheckingAccount) while also using polymorphism to
determine balance calculation methods based on
account types [5],[6].

The C++ version of the banking system utilized
inheritance and polymorphism mechanisms that were
analogous to the Java version. The program included
base classes and derived classes to display standard
OOP principles in a statically-typed language structure

[7].
Challenges:

Java together with C++ needed deep inheritance
structures that introduced program complexity which
reduced design flexibility. Modifying the parent class
made developers maintain multiple child classes
through inevitable code maintenance problems.

The inheritance model-maintained duplication
between classes despite using polymorphism to reduce
it because essential functionality needed a more
effective manner of generalization.

2) Modern OOP with Trait-Based Programming and
Pattern Matching (Kotlin and Swift)

Objective:

A restatement of the banking system occurred when
developers implemented the same platform again
using modern programming languages Kotlin and
Swift. Modern programming languages implement
traits together with pattern matching which are
combined with immutability features in order to
overcome OOP traditional restrictions [3].

Kotlin changed the banking system structure through
interface utilization together with higher-order
functionality application. The adoption of Kotlin
interfaces substituted traits in the code and sealed
classes with pattern matching patterns handled various
transaction types.

Swift protocols together with protocol extensions
implemented the functions that traditional inheritance
would use. The code became more direct through
pattern matching together with immutability because
these features both cut down the need for conditional
statements and mutable state.

Benefits Observed:
The code reached higher levels of modularity because
interfaces (Kotlin) paired with protocols (Swift)
allowed behavior mixing through inheritance-free
interfaces.

The type safety of the system improved after Pattern
matching became a standard practice in Kotlin and
Swift development.

Utilities of immutable data types within these
programming languages generated systems that kept
their side effects to a minimum thus -creating
operational simplicity.

3) Functional-OOP Hybrid Programming Using Scala
and Rust

Objective:

The analytic design of a banking system combined FP and
OOP methods through its development using Scala and Rust.
The designers selected these languages because they combined
exemplary features of immutability and functional
programming paradigms alongside OOP structures.

The banking system implemented with Scala made use
of sealed traits which defined diverse account types
together with transactions. Through its use of
immutability and pattern matching capabilities Scala
enabled the system to operate transactions of different
types with both safety and efficiency.

54

IJEEC

International Journal of Electrical Engineering and Computing

Vol. 9, No. 2 (2025)

e Rust utilized Enums to specify account types and its
owners’ concepts together with pattern matching
protocols enabled safe memory operation and
prevented processes known as data races.

Benefits Observed:

e The implementation of immutable data types delivered
thread safety to the system because threads never
shared modifiable states thus minimizing concurrent
issues.

e Functional programming concepts which mix with
object-oriented principles have enhanced both code
flexibility and declaration in the system.

III. RESULTS

A. Trait-Based Programming and Mixins

Current implementations of OOP languages require
extensive use of inheritance until problems appear because of
deep class hierarchies and code duplication [18]. The design of
software becomes complicated and difficult to expand through
time when engineers work with this approach. Rust and Scala
have implemented trait-based programming as a substitute to
resolve inheritance problems by providing reusable
components without deep class hierarchies limitations [3] [19].

Outside of interfaces traits enable default method
implementations that provide developers with a flexible

method of composing behaviors in their code. The
implementation removes requirements for numerous
inheritance levels to enable reuse of code. The Scala

programming language allows dynamic trait integration with
classes thus eliminating strict hierarchical limitations.

The code snippet in Listing 1 is written in the Scala
programming language, and demonstrates the basic principle of
"trait-based programming", i.e. using trait as a code reuse
module instead of inheriting from deep classes.

Listing 1. Scala: Trait-Based Programming for Reusable Behavior
trait Logger {

def log(message:
Smessage")
}
class User (val name: String) extends Logger {

def greet(): Unit = log(s"Hello, S$name")
}

The Rust programming language permits developers to

establish shared behavior between distinct types with traits

after assuring memory safety establishes.

String): Unit = println(s"Log:

Listing 2. Rust: Defining Shared Behavior Using Traits

trait Speak {

fn say hello (&self);
}
struct Person;
impl Speak for Person {

fn say hello(&self) {

println! ("Hello!");

}

}

Listing 2 illustrates how Rust defines shared behavior
through traits. The Speak trait declares a reusable interface,
while the Person struct implements it using the impl block
(implementation block), ensuring type safety and memory
safety by design.

Developers who use traits instead of deep inheritance
methods obtain better structured code that remains flexible and

easy to maintain.

Table 2 clearly shows the shift from a rigid model of
inheritance to a more flexible, modular approach in modern

languages.

Traits and mixins enable code reuse, simpler hierarchies,
greater flexibility, and safer maintenance, thus representing the
evolution of OOP towards a combination of functional

principles.

TABLE 2: COMPARISON OF TRAIT-BASED PROGRAMMING AND MIXINS

Feature Traditional Traits (Modern
Inheritance Approach)
Allows flexible

Code Reusability Requires extending composition of
base classes behaviors

Hierarchy Complexity Leads to deep Avoids class hierarchy
inheritance chains depth

Method Inherited methods from | Methods can be

Implementation base class overridden or mixed in

Flexibility Limited to single or Enables modular and
multiple inheritance reusable design

B. Pattern Matching and Algebraic Data Types

Pattern matching from both Swift and Kotlin produces
polymorphism functionality by cutting down conditional
complexity for better code readability. Since traditional OOP
relies on if-else statements and switch statements to establish
type differences pattern matching provides an organized
mechanism that ensures safe processing.

The primary mechanism within Kotlin for pattern matching
operates through when expressions that enable developers to
conduct strong and secure data type detection. Listing 3 shows
a typical example of an algebraic data type (ADT) in languages
that blend object-oriented and functional programming.

Listing 3. Kotlin: Pattern Matching over a Sealed Class Hierarchy

sealed class Shape
class Circle(val radius: Double) : Shape ()
class Rectangle(val width: Double, wval height:
Double) : Shape ()
fun describe (shape: Shape): String = when (shape) {
is Circle -> "A circle with radius
${shape.radius}" The research methodology includes
four main parts which are
is Rectangle -> "A rectangle with dimensions
${shape.width} x ${shape.height}"
}
Scala and Rust manage data in a type-safe way using
Algebraic Data Types (ADTs), permitting developers to define

a finite set of data structures.

Formally, an algebraic data type defines a new type as a
composition of other types or a set of possible constants. A set
of alternatives may be enumerated in a type definition, some of
which may be recursive. For example, a type can be defined for
the four suits of playing cards (spades, hearts, diamonds,
clubs), days of the week, the values in Boolean or in Kleene’s
trivalued logic. The product of these types may also be defined
[9]. The program code in Listing 4 demonstrates algebraic data
type — a form with two variants (sum type), pattern matching
— decomposing values into variants, and type safety and code
readability — without an “if/else” chain, all possible variants
are covered.

Jasna Hamzabegovié¢

Listing 4. Rust (enum + match): pattern matching over shape

variants -
enum Shape { Application
Circle (fo64), .

Rectangle (f64, f64),
}
=> println! ("Circle with
radius {}", 1),

fn describe (shape: Shape) {
wiisell slimes | Domain logic
Shape: :Rectangle (w, h) => @
println! ("Rectangle of width {} and height {}", w,
h), Generates artifacts
}

Shape: :Circle (r)
}

L . Figure 2. Immutable Architecture [8]
The combination of pattern matching and ADTs through

pattern-based expressions, which replace poorly constructed
conditional statements, upgrades code expressiveness in a way
that modernizes OOP languages [4], as summarized in Table
3. Programmable expressions eliminate if-else statements to
have codebases that are not only maintainable but more
readable as well. ADTs are statically-typed at compile time,
which means strict data integrity is preserved, providing one
more advantage to preventing run time errors. Implemented
developments benefit developers with higher quality output,
and changes in certain debugging features that aid in

For example, Scala ensures program integrity with “val”
declarations that label data constants and disallow mutable
collections while Kotlin does this with immutable data classes.
The combination of top-level functions with higher-order
functions reduce the need for mutable shared state elements
thus more predictable and maintainable code. These modern
software methodologies add robustness into the development
process whilst allowing developers to build scalable, thread-
safe applications with reduced reliance on synchronization.

developing reliable software constructs that detail all structural
states and associated behaviour’s for all data structures.

1) Immutability in Scala and Kotlin
The val is used because Scala immutability principles
dictate that we need to create Immutable variables.

TABLE 3: COMBINATION OF PATTERN MATCHING AND ADTS val name: String = "Alice” // Immutable
// name = "Bob" // Error: reassignment not allowed
Feature Traditional OOP Pa“emAl\;;;tCh‘“g & As Listing 5 shows, Kotlin data classes are immutable by
s
- default.

Uses instanceof and

Type Handling type casting Uses structured pattern- Listing 5. Kotlin: Immutability in Data Classes
. . matching CXPIESSIONS data class User(val name: String,val age: Int)

Safety Can result in runtime Ensures compile-time = User ("John", 30)

errors type safety ge = 31
Readability Requires long if-else More concise and or: Cannot modify immutable data class

chains EXpressive 2) Functional Programming Integration

C. Immutability and Functional Integration

The biggest challenge of Object Oriented Programming is

Modern programming languages use higher-order functions
along with pure functions to make applications work without

Mutable State, as the interaction of complex debugging
scenarios and race conditions leads to unpredictable program
behaviour in the context of multi-threaded systems.
Simultaneous operation of several states results in malfunction
due to their combined action and makes simultaneous
performance harder to carry out without failure. Kotlin and
Scala were OOP languages that easily provided immutability
by preventing changes to assigned data through this

mechanism, thereby preventing changes from altering data. let numbers =

The concept of separating immutable domain logic from the
mutable state layer, as illustrated in Fig. 2, aligns with the
principles of functional integration discussed in this section.
This architecture isolates side effects and enhances thread
safety, achieving the immutability goals implemented in

languages such as Kotlin and Scala. Table 4.

changing their underlying
ownership rules along with borrowing rules to protect against
data races, but Swift and Kotlin allow developers to use
functional data protection methods. A typical example of
functional integration in Swift in Listing 6 shows how pure
functions and immutable collections achieve predictable and
safe behavior without changing state (immutability).

state.

(1, 4, 9, 16, 25

Rust

implements data

Listing 6. Swift: example of functional integration
(1, 2, 3, 4, 5]
let squared = numbers.map {$0 * S0}
print (squared) // s 23

These improvements, including better thread safety, code
predictability, and simplified debugging, are summarized in

TABLE 4. BENEFITS OF IMMUTABLE & FUNCTIONAL OOP

Feature Mutable OOP Immutable &
Functional OOP

Requires locks & Naturally safe for
Thread Safety synchronization concurrency

Mutable state Pure functions avoid
Code Predictability introduces side effects side effects

Harder to track state More predictable code
Debugging Complexity | changes behavior

56

IJEEC

International Journal of Electrical Engineering and Computing

Vol. 9, No. 2 (2025)

D. Hybrid Paradigms (Functional-Object Fusion)

The modern programming ecosystem has a variety of
hybrid languages that can support use OOP but reap the
benefits of FP. Developers gain the ability to produce modular
structures that are highly flexible and easy to maintain (while
exploiting the benefits of both paradigms) through this
combination of paradigms.

Swift and Kotlin are two well-known examples of
languages that integrate OOP and FP. It delivers expression
quality, conciseness, and improved reasonability in code via
first-class functions and higher-order functions (in conjunction
with immutable data structures). These languages allow
developers to use the functional programming principles to
write predictably- and thread-safe structures and preserve the
reusability that OOP brings.

Kotlin integrates functional programming through higher-
order functions and lambdas in a way that feels very natural to
its overall object-oriented structure. With this method, the
programmers can write more concise and compact code. The
modularity of the blocks of code that higher-order functions
generate gives some flexibility that keeps the essential OOP
organizational structure intact.

Listing 7. Kotlin: higher-order function implementation
class Calculator {

fun operate(a: Int, b: Int, operation: (Int,

Int) -> Int): Int {
return operation(a, b)

}
}
val calc = Calculator ()
val sum = calc.operate(5, 3) { x, v > x + y }
println (sum) Output: 8

Listing 7 shows how functional programming can be
implemented with OOP to make things run easier and code
simpler.

The language presents developers with the ability to unify
OOP methods and functional programming techniques using
closures and protocols which produce short and reusable lines
of code that retain clear object-oriented abstractions. Swift
protocols present an interface pattern that supports default
implementations which let developers construct polymorphic
patterns that serve both FP and OOP design goals.

1) Main advantages of integrating OOP and FP

The combination of OOP and FP elements during the
hybrid development grant developers the privilege to tap into
the strengths that each programming paradigm has to offer. The
ideal combo of FP immutable data structures and OOP's
systematic structure to keep complex systems in check FP's
pure functions to minimize side effects of program behaviour
plenty of programming advantages come forth from this
approach! This hybrid approach allows seamless maintenance
as well as scalability, leading to better modular design and
programmable composition [see Table 5].

TABLE 5. KEY FEATURES OF HYBRID OOP-FP PARADIGMS

side effects functional purity to
avoid side effects
Flexibility Rigid class structures More modular,
with tightly coupled composable, and
components adaptable to changes
Concurrency Often requires complex | Immutable state and
synchronization pure functions ensure
mechanisms thread-safety without
locks

2) Real-World Application and Benefits

The using object-oriented programming juxtaposition with
functional programming enables programmers to write code
which is maintainable along their brevity, customization and
simplicity to modify as per changing needs. This facilitate
functional execution (callback operations and promises), that is
passing functions as arguments or in other words using a
higher-order functions and closures, while still respecting OOP
principles.

It also makes concurrency better. One particularly
powerful feature of functional programming is immutable
state, which eliminates the salting effect of shared mutable
state that provides the majority of race conditions and
deadlocks when running code in a multi-threaded manner.
Swift and Kotlin have merged paradigms, combining
functional and object-oriented features, allowing developers to
leverage safety and efficiency while also providing the
scalability needed for programming language development.

The Modern programming languages evolve due to the
adoption of the OOP constraints solution that helps create
more easily maintainable systems, that is more efficient in
terms of security and that can scale far beyond the boundaries
of complexity and concurrency.

E. Concurrency and State Isolation in Modern OOP-FP
Systems

To empirically demonstrate the differences between
traditional OOP and modern paradigms, a comparative analysis
of implementations in several programming languages was
conducted. Table 6 presents a structured overview of common
concurrency problems, corresponding language-level
mechanisms, and their effects on execution safety and
performance. Code listings following the table illustrate how
modern paradigms eliminate race conditions and deadlock
scenarios without relying on explicit locks..

TABLE 6. O0P CONCURRENCY PROBLEMS AND MODERN SOLUTIONS

Feature Traditional OOP Hybrid OOP-FP
Code Style Focus on class-based Mixes functions with
hierarchy objects, enabling
flexible code blocks
State Handling Emphasizes mutable Encourages

state, which can lead to

immutability and

Problem in Language Effect on Examples of
OOP systems solution / competitiveness language /
mechanism techniques
Shared mutable Immutability Eliminates the Scala (val, List),
state) by default, need for locks, Kotlin (val, List),
immutable enables Swift (let, struct)
collections deterministic
behavior
Races when Actors / Sequentializes Kotlin
accessing Message access to state Coroutines
facilities (race passing without explicit Channel, Akka
conditions) locks (Scala), Swift
actor, Rust
tokio::mpsc
Deadlock due to Structured Avoids circular Swift
multiple locks Concurrency waiting and Concurrency
i async/await deadlock (async let,
scenarios TaskGroup),

57

Jasna Hamzabegovié¢

Rust async/await,

Kotlin
coroutineScope
Unpredictable Ownership / It statically Rust (Send,
synchronization Borrowing prevents data Sync, borrow
and complex model races and ensures checker")
debugging safe concurrency
Difficulty Composition | Reduces coupling Scala traits,
maintaining over and facilitates Swift protocols,
hierarchies and inheritance; modular testing Rust traits
sharing state Traits /
between Protocols
instances
Deterministic Kotlin
State changes Pure state Flow.scan, Swift
during functions + transformation, Combine.scan,
multithreading state without side- Redux-like
(inconsistency) reduction effects models
(event —
state)

The need for Software Guarantees Clojure STM,
complex data Transactional composability Haskell STM,
synchronizations Memory and elimination AtomicReference

(STM) ili of deadlocks in Kotlinu
atomic
references
Opaque Value Limits access to Swift struct
mutation semantics / mutable objects, (value type),
through aliases Copy-on- makes state local | Kotlin data class
and references write s copy()

Modern hybrid languages demonstrate that concurrency
safety is achieved not by adding synchronization primitives,
but by redesigning state management and isolation at the

language level.
following

The

code

fragments

illustrate

selected

mechanisms from Table 6 implemented in Kotlin, Rust, and
Swift. As shown in Listing 1, messages are processed
sequentially, no shared state or locking.

Listing 1. Kotlin: sequential processing without locks

class AccountActor (val id:

CoroutineScope) {
private var balance
= Channel<Msg> (Channel.UNLIMITED)

val inbox

init {

scope.launch {

BankBus.accounts[m

}

for (m

is
is

in inbox)
Deposit -> balance += m.a
Xfer ->
.to]?.inbox?.send (Deposit (m.a))

Int,

oL

when (m)

scope:

Listing 2 demonstrates Rust’s ownership and borrowing
mechanism to statically prevents data races.

Listing 2. Rust (Tokio mpsc): statically prevents data races

enum Msg { Deposit (ué4),

b}

Xfer {

to:

async fn run (mut bal: u64, mut rx:

mpsc: :Receiver<Msg>,

{

while let Some (m

) =

match m {

Msg: :Deposit (a)
Msg::Xfer { to,
amt ;

bal -=
let =

peers:

usize,

amt: u64

Vec<mpsc: :Sender<Msg>>)
rx.recv () .await {

=> bal += a,
amt } => {

peers[to].send (Msg: :Beposit (amt)) .await;

}

The Swift implementation in Listing 3 ensures state isolation
through actors, which guarantee a sequential access — there
are no explicit locks or race conditions.

Listing 3. Swift Concurrency: Isolated state with no deadlocks

actor Account {
private var balance = 0

func deposit(_ a: Int) { balance += a }

func withdraw(_ a: Int) { balance -= a }
}
actor Bank {

private var acc: [Int: Account] = [:]

func transfer (from s: Int, to d: Int, a: Int)
async {

guard let src = acc[s], let dst = accl[d]

else { return }

await src.withdraw(a); await dst.deposit (a)

}

All three implementations avoid explicit locks. Kotlin and
Swift achieve safety via actors and structured concurrency,
while Rust enforces race-freedom at compile time through
ownership and message passing. As summarized in Table 7,
actor-based and value-type paradigms maintain concurrency
safety by design. Modern hybrid languages (Kotlin, Swift,

Rust) achieve deterministic behavior without explicit
synchronization, simplifying debugging and improving
scalability.
TABLE 7. COMPARATIVE METRICS OF CONCURRENCY SAFETY
Access Locks State Risk of | Stability / Note
mutabil | deadlock | testability
ity
Java 2 High High Low The need
(classic for manual
synchroniz locking and
ed) access
sequencing
Kotlin 0 Low Low High Messages
(actor + (local instead of
Channel) state) locks
Rust (Tokio | 0 Low Low High Borrow
mpsc) (owners checker
hip) eliminates
races
Swift 0 Low Low High Isolated
(actors) state and
sequential
await
Kotlin 0 Very Low High Determinis
(Flow + low tic flow
ADT) (unchan without
ged) side-effects
Swift 0 Very Low High Value-
(Combine + low types
struct) (value- instead of
semantic shared state
s)

IV. DISCUSSION

The study provides conclusive evidence about modern
programming languages which have solved traditional OOP
limitations through advanced enhancements. The innovative
features of trait-based programming together with pattern
matching and immutability provide strong answers to the built-
in difficulties within classical OOP through the fusion of

58

IJEEC

International Journal of Electrical Engineering and Computing

Vol. 9, No. 2 (2025)

functional programming with object-oriented programming.
The recent improvements in OOP through the resolution of
deep inheritance chains and mutable states together with
polymorphism complexity have transformed the paradigm into
a better solution for contemporary software development
through enhanced modularity and scalability and improved
maintainability.

1) Trait-Based Programming

Code reuse in OOP normally depends on inheritance as its
main mechanism yet produces inflexible system structures that
restrict future development capabilities. The usage of this
method produces highly connected classes and introduces
hurdles to software expansion that simultaneously generates
unexpected side effects. The programming languages Rust and
Scala have combined to present trait-based programming as a
solution that replaces the requirements for deep inheritance
hierarchies. Traits provide programmers with a mechanism to
add functionality to classes through modular design techniques.
The implementation of traits as behavior components among
developers leads to reduced object dependencies and promotes
loose coupling style in software [20].

The Scala programming language enables methods
inheritance from multiple traits through traits which prevents
users from creating intricate inheritance structures since they
can combine diverse behaviors into a single class. The
maintenance and flexibility of designs significantly improve
when using this method even though traditional inheritance
models did not enable the same advanced features.

2) Pattern Matching and Algebraic Data Types

Pattern matching and ADTs are a huge leap because they
greatly enhance type safety and expressiveness over OOP.
Common OOP polymorphism is based on type casting and
instance of checks for implementation but both these methods
throw errors which lead to runtime failures. Pattern matching
allows developers to define value comparisons using
declarative pattern sets within a security programming
framework. Kotlin and Swift pattern matching helps
programmers as this language feature leads to Dbetter
polymorphism through an expressive statement pattern that led
away from long and bug-prone if-else blocks.

ADTs act as a safeguard for developers to create and
manipulate complex data structures. ADTs define all the states
a data structure can take and this prevents illegal states thus
improving safety and reducing runtime errors. Being able to
pattern match exhaustively (Rust Enums combined with Scala
sealed classes) means that every case can be caught at compile
time, which translates into fewer errors in the code itself.

Fig. 3 demonstrates how an Abstract Data Type (ADT) hides
internal data structures (like arrays, linked lists) using public and
private functions, exposing only a defined interface to the application
program.

Abstract Data Type

Private
Functions Functions

||]

Data Structures

Public
Interface

Application
Program

Array

L O

Linked List
=

Memory

Figure 3. ADT Works [21]

The merge of pattern matching with ADTs enables
developers to make their code both readable and maintainable
since they do not have to manage difficult type structures while
focusing on object behavior control. The additional features
enhance debugging capabilities because developers receive
instant verification about mismatches or missing cases while
performing compilation.

3) Immutability and Functional Programming Integration

In modern OOP languages such as Scala and Kotlin,
immutability is promoted as the solution to the issue caused by
mutable state. Unexpected effects like races and deadlocks as
well as unanticipated responses happen from the storage of
mutable data in concurrent systems. Modern programming
languages establish immutability as the default gross settings,
ensuring that assigned values are modification recall and
immutable behaviour thus resulting in consistency and thread
safe behaviour.

Since multi-threaded environments do not have any
complex resource synchronizing mechanism to keep their data
safe from a change, immutability makes data safe by making it
non-modifiable. Immutable data enhances program clarity
because it enables developers to observe side effects more
clearly as well as diminishes the chance of bugs arising from
unintended state modifications.

The implementation of pure functions alongside higher-
order functions from functional programming yields code
which becomes clearer along with being easier to modularize.
The programming paradigm with functional characteristics
helps programmers create transformations and compositions to
manage data flow while properly ensuring that state mutations
remain out of their concern. Through Kotlin and Scala
developers gain access to a powerful programming
combination that lets them use OOP structure together with
functional programming flexibility.

4) The Fusion of OOP and FP

Developers now have the advantage of flexible
development through the combination of functional
programming with OOP because this allows them to select the
paradigm which best meets their development requirements.
The Swift and Kotlin are two such emerging programming
languages that create a powerful synergy between the OOP
object abstraction capabilities and the rich expressiveness and
composability from FP. This dual-paradigm structure allows
developers to switch between the two programming paradigms
based on their current needs while creating clean maintainable
and extensible code.

59

Jasna Hamzabegovié¢

This enables designers to cover their complex state
requirements through objects using OOP methods, but perform
pure computations and concurrency in a manner similar to FP,
while composing behaviours with side-effect free expressions.
It shows an excellent fit for the transformation of large-scale
systems as it offers flexible scalability features, while
maintaining robust maintainability characteristics.

Modern programming languages, software developers are
able to reap the benefits invisible from both OOP and FP
paradigms in a single effort and therefore, create higher-
performing and more scalable software frameworks. Through
hybrid paradigms developers get the opportunity to write more
efficient and cleaner code with less complexity through
conventional OOP limitations. The combination of OOP and
FP paradigms allows for the development of systems that are
simultaneously modular, flexible, and easier to maintain [22].

5) Practical Verification of Concurrency Safety
The empirical results presented in Section III provide
practical confirmation of the theoretical assumptions
introduced in earlier parts of the paper.

Modern OOP-FP languages such as Kotlin, Rust, and Swift
successfully address long-standing concurrency problems
inherent to traditional OOP systems — shared mutable state,
race conditions, and deadlocks — through built-in language
mechanisms rather than external synchronization constructs.

Actors and structured concurrency in Kotlin and Swift,
together with Rust’s ownership and borrowing model, ensure
deterministic message sequencing, state isolation, and compile-
time prevention of data races.

This practical verification supports the central thesis of the
paper: that hybrid paradigms combining object-oriented and
functional concepts not only improve code modularity and
expressiveness but also achieve safe, scalable concurrency by

design.

V. CONCLUSION
Empirical verification through Kotlin, Swift, and Rust
implementations confirms that modern programming

languages achieve concurrency safety without shared mutable
state. This represents a major advancement in the evolution of
object-oriented programming (OOP), moving toward
deterministic, reliable, and maintainable parallel systems.

Modern extensions of OOP mark a new era in software
design. Traditional OOP has long faced challenges in
scalability and maintainability while attempting to maintain
flexibility in large-scale, parallel environments. However,
through the integration of trait-based programming, pattern
matching, and immutability—key concepts drawn from the
functional programming paradigm—modern languages have
substantially enhanced OOP’s capabilities and resolved many
of its longstanding limitations.

Modern applications using trait-based programming, have
effectively eliminated inheritance as a traditional base so that
developers can create repositionable modules which do not
require long inheritance paths, Software developers are
enjoying greater flexibility and maintainability as the
convoluted hierarchy-inheritance structures have moved to
simple reusable traits or protocols. Features like traits of Scala
and Rust add balance to the flexibility of a codebase to evolve
over time (adding new behaviour with minimal dependencies

Today, most OOP frameworks rely on type casting and
instance of checks among others to run well however these
mechanisms generate runtime vulnerabilities but significantly
hamper their safety levels. In addition to type safety and
brevity, pattern matching systems generate human readable
code. Through the use of ADTs the system allows only correct
data structure states preventing runtime errors and making the
developed software more reliable. The new features help
improve the reliability of programs by providing stronger
ways of expressing both data types and control flow paths in a
more secure and less cumbersome way.

The object-oriented programming principles together with
functional programming features which Swift and Kotlin have
give developers capabilities to create clear and self-explanatory
code. Modern languages allow developers to leverage best
features from OOP and FP due to their unified implementation
of strong object abstraction with structural design and
composability and immutability capabilities. Through this
combination of paradigms developers achieve complete
flexibility because they can select between programming
paradigms for each task. Developers should use OOP to
address complex state and behavior through objects yet take
advantage of FP techniques to create pure code without side
effects that enhances testing and maintenance. As Amin et al.
[20] point out, understanding the personality traits of software
programmers can support the design of educational and
development tools tailored to different cognitive styles, which
further reinforces the need for more flexible programming
paradigms.

The current advancements to object-oriented programming
make it much more beneficial for developing modern software.
Modern programming languages solve traditional OOP flaws
which include deep inheritance structure and mutable objects
and tight class coupling so developers can produce better
maintainable solutions. Modern OOP becomes more suitable
for current software demands while serving as a working base
for development of applications that scale efficiently and
ensure thread safety and modularity. The development of OOP
software depends on the effective fusion between OOP and
functional programming to produce safer and cleaner
applications. The next research direction should analyze how to
improve such enhancements in OOP and establish their
integration with current development practices for ensuring
OOP's capability to handle modern complex software demands.

The presented comparative implementations and metrics
confirm that modern hybrid programming languages achieve
concurrency safety through design principles rooted in
functional immutability and object encapsulation.

By integrating message passing, ownership semantics, and
value-based state management, these languages demonstrate
that theoretical models of safe parallelism can be effectively
applied in practice. This convergence between theory and
implementation marks a significant step in the evolution of
object-oriented ~ programming from imperative
synchronization to declarative, deterministic concurrency.

REFERENCES
[1] J. Yang, Y. Lee, D. Hicks and K. Chang, “Enhancing object-oriented
programming education using static and dynamic visualization,” Proc.
IEEE Frontiers in Education Conf. (FIE), pp. 1-5, 2015, https://doi:
10.1109/FIE.2015.7344152

[2] S. Srinivasan, A. Mycroft and J. Vitek, “Kilim: Isolation-typed actors for
Java — A million actors, safe zero-copy communication,” in Proc.
ECOOP 2008 — Object-Oriented Programming: 22nd European Conf.,

60

IJEEC

International Journal of Electrical Engineering and Computing

Vol. 9, No. 2 (2025)

[3]

(4]

(3]

(7]

(8]

]

[10]

(1]

vol. 5142, pp. 104-128, Springer, Berlin, Germany, 2008, doi:
10.1007/978-3-540-70592-5 6.

V. P. D. Layka and D. Pollak, “Traits,” in Beginning Scala, pp. 121—
132, Apress, 2015, https://doi: 10.1007/978-1-4842-0232-6_7

S. Ryu, C. Park and G. L. Steele, Jr., “Adding pattern matching to
existing object-oriented languages,” Journal of Object Technology, vol.
9, no. 3, pp. 75-99, 2010, https://doi: 10.5381/j0t.2010.9.3.a3

P. Deitel and H. Deitel, Java How to Program: ATM Case Study Part 2
— Implementing the Design, Pearson Education, 2017. [Online].
Available:
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-
college-open-resources/deitel-como-programar-en-java/como-
programar-en-java-l e-espcaps-en-linea/capitulo-
34.pdf?sfvrsn=525fd2b2_2

“ATM Case Study, Part 1: Object-Oriented Design with the UML,”
ATM Case Study, Deitel Series, Pearson, 2017. [Online]. Available:
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-
college-open-resources/deitel-como-programar-en-java/como-
programar-en-java-1e-espcaps-en-linea/capitulo-
33.pdf?sfvrsn=465fd2b2 2

M. Twain, Object-Oriented Software Design and Java Programming:
Chapter 13 — ATM Case Study Part 2 — Implementing an Object-
Oriented Design, University of Birmingham Press, 2018. [Online].
Available: https://www.studocu.com/en-gb/document/university-of-
birmingham/object-oriented-software-design-and-java-
programming/chapter-13-atm-case-study-part-2-implementing-an-
object-oriented-design/4437434

V. Khorikov, “Immutable architecture,” Enterprise Crafismanship,
2016. [Online]. Available:

https://enterprisecraftsmanship.com/posts/immutable-architecture/
Accessed: May 7, 2025.

V. Torra, Scala: From a Functional Programming Perspective—An
Introduction to the Programming Language. Cham, Switzerland:
Springer, 2016, https://doi: 10.1007/978-3-319-46481-7

S. Melkonyan, “Object-oriented programming (OOP) vs functional
programming (FP),” Flux Technologies Blog, 2023. [Online]. Available:
https:/fluxtech.me/blog/object-oriented-programmin

-vs-functional-

programming/

A. Sabané, Y.-G. Guéhéneuc, V. Arnaoudova and G. Antoniol, “Fragile
base-class problem, problem?,” Empirical Software Engineering, vol.
22, no. 5, pp. 2310-2345, 2017, https://doi: 10.1007/s10664-016-9497-3

Jasna Hamzabegovi¢ is an Associate
Professor at the Faculty of Technical
Sciences, University of Biha¢, Bosnia
and Herzegovina. She received her B.Sc.
degree in Informatics from the
University of Sarajevo, the M.Sc. degree
in Computer Science and Informatics
from the University of East Sarajevo, and
the Ph.D. degree in Technical Sciences
from the University of Biha¢ in 2014.
Her research interests include educational software
development, digital literacy, game-based learning, and user-
centered applications for vulnerable populations.

Dr. Hamzabegovi¢ has authored or co-authored approximately
40 scientific and professional publications and is the co-author
of the university textbook Object-Oriented Programming with
C++. She has participated in several international projects in the
areas of innovative education and digital transformation and
serves as a reviewer for international conferences. She is
currently the Head of the Department of Electrical Engineering
at the Faculty of Technical Sciences, University of Biha¢.

[12]

S.H. Tee, “Problems of inheritance at Java inner class,” arXiv preprint,
arXiv:1301.6260, 2013. [Online]. Available:
https://arxiv.org/abs/1301.6260

[13] Naukri Code 360, “Disadvantages of inheritance in Java,” 2023.

[Online]. Available:
https://www.naukri.com/code360/library/disadvantages-of-inheritance-

in-java

[14] CodiLime, “Decoding inheritance: An insight into the use and misuse,”

2023. [Online]. Available:
inheritance-use-and-misuse

https://codilime.com/blog/decoding-

[15] M. Skoglund, “A survey of the usage of encapsulation in object-oriented

[16]

[17]

[18]

[19]

[20]

[21]

[22]

programming,” Department of Computer and Systems Sciences,
Stockholm University / Royal Institute of Technology, Stockholm,
Sweden, 2003. [Online]. Available:
https://www.researchgate.net/publication/228543013_A_survey_of the
usage of encapsulation_in_object-oriented_programming

Y.Y. Zhuang, W. Kuo and S.C. Tseng, “Resolving the Java
representation exposure problem with an AST-based deep copy and
flexible alias ownership system,” Electronics, vol. 13, no. 2, 350, 2024,
https://doi: 10.3390/electronics13020350

J.-P. Bernardy, M. Boespflug, R. R. Newton, S. Peyton Jones and A.
Spiwack, “Linear Haskell: Practical linearity in a higher-order
polymorphic language,” Proc. ACM on Programming Languages
(POPL), vol. 2, Art. 5, pp. 1-29, 2017, https:/doi: 10.1145/315809

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Entwurfsmuster als Elemente wiederverwendbarer objektorientierter
Software, Bonn, Germany: MITP-Verlags GmbH & Co. KG, 2015.

The Rust Programming Language, “Traits: Defining shared behavior,”

[Online]. Available: https://doc.rust-lang.org/book/ch10-02-traits.html.
Accessed: Apr. 13, 2025.

A. Amin, M. Rehman, R. Akbar, S. Basri and M. F. Hassan, “Trait-
based personality profile of software programmers: A study on
Pakistan’s software industry,” in Proc. 8th Int. Conf. Intelligent Systems,
Modelling and Simulation (ISMS), pp. 90-94, IEEE, 2018, https://doi:
10.1109/ISMS.2018.00026

GeeksforGeeks, “Abstract data types,” 2025. [Online]. Available:
https://www.geeksforgeeks.org/abstract-data-types/. Accessed: Jun. 1,
2025.

B. M. D. de Sousa, R. C. Ferreira, and A. Goldman, “Functional vs.
Object-Oriented: Comparing How Programming Paradigms Affect the
Architectural ~ Characteristics of Systems,” arXiv preprint
arXiv:2508.00244, 2025.

61

https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-34.pdf?sfvrsn=525fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://www.pearsonenespanol.com/docs/librariesprovider5/2018-college-open-resources/deitel-como-programar-en-java/como-programar-en-java-1e-espcaps-en-linea/capitulo-33.pdf?sfvrsn=465fd2b2_2&utm_source=chatgpt.com
https://enterprisecraftsmanship.com/posts/immutable-architecture/
https://fluxtech.me/blog/object-oriented-programming-vs-functional-programming/
https://fluxtech.me/blog/object-oriented-programming-vs-functional-programming/
https://arxiv.org/abs/1301.6260?utm_source=chatgpt.com
https://www.naukri.com/code360/library/disadvantages-of-inheritance-in-java?utm_source=chatgpt.com
https://www.naukri.com/code360/library/disadvantages-of-inheritance-in-java?utm_source=chatgpt.com
https://codilime.com/blog/decoding-inheritance-use-and-misuse?utm_source=chatgpt.com
https://codilime.com/blog/decoding-inheritance-use-and-misuse?utm_source=chatgpt.com
https://www.researchgate.net/publication/228543013_A_survey_of_the_usage_of_encapsulation_in_object-oriented_programming?utm_source=chatgpt.com
https://www.researchgate.net/publication/228543013_A_survey_of_the_usage_of_encapsulation_in_object-oriented_programming?utm_source=chatgpt.com
https://doc.rust-lang.org/book/ch10-02-traits.html
https://www.geeksforgeeks.org/abstract-data-types/

