

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

1

Original research paper
UDC 004.822:004.42`234-055.25

 DOI 10.7251/IJEEC2501001V

CodeCrafter – Efficient Code Generator for Modern

Single-page Web Applications

Danijela Vukosav1, Danijela Banjac1, Miloš Ljubojević1, Mihajlo Savić1

1 University of Banja Luka, Faculty of Electrical Engineering, Banja Luka, Republic of Srpska, Bosnia and Herzegovina

 E-mail address: danijela99vukosav@gmail.com, danijela.banjac@etf.unibl.org, milos.ljubojevic@etf.unibl.org, mihajlo.savic@etf.unibl.org

Abstract—Web applications and REST API based applications can be seen as the most common type of application today and their

number is constantly increasing. Due to the pressure to produce more code and be faster at producing it, developers have been using

various programming languages, libraries and frameworks suitable for such applications. Two of the most popular technologies are

Spring on the back-end, and React on the front-end. While each technology provides satisfactory functionality, the amount of code that

needs to be produced is non-trivial, especially in cases where the application has to provide even basic security and auditing

functionalities. One solution for this issue is the use of code generator tools that produce both back- and front-end code from a model.

While a wide variety of generators exist, none of the analyzed ones fulfill all the requirements of a modern web application. In this

paper, we present CodeCrafter, a web-based code generation application that produces Spring and React code based on relational data

models in DDL or JSON format, and provides developers with a simple and efficient tool to generate fully functional foundational code.

We compare it to existing code generation tools and measure its performance as a function of the number of tables in the database. We

show that CodeCrafter produces code in a very short amount of time even for very complex databases, while providing features and

functionalities not present in other analyzed tools. We also give a short overview of possible use in conjunction with LLM based coding

tools.

Keywords-component; code generation; single-page web application; REST API; relational databases

I. INTRODUCTION

Efficient planning, design, and implementation are crucial
in software system development, yet these processes can often
be time-consuming and error-prone. A significant portion of
development involves standardizing folder and file structures,
planning database schemas, and implementing authentication,
authorization, and CRUD (Create, Retrieve, Update, Delete)
operations. These tasks frequently follow identical patterns
across various projects, regardless of their specific domains [1].
Thus, automating template-based aspects of development is a
logical strategy to reduce time consumption and enhance
productivity.

Model-Driven Development (MDD) is a concept closely
associated with software development automation [2]. MDD
emphasizes the creation of abstract models that depict the
system's structure and behavior, rather than direct coding.
These models often utilize standardized languages, such as
Unified Modeling Language (UML) or Domain-Specific
Languages (DSL). By transitioning from these models to code
through automated generation, development can be
significantly accelerated while minimizing errors.

While adopting MDD yields numerous benefits, including
reduced manual effort and an expedited development timeline,
it can also significantly alter the development process [3]. The
use of models fosters standardization and component

reusability while decreasing the likelihood of implementation
errors. Changes can be directly made to models, minimizing
the need for manual code alterations. Nevertheless, the MDD
approach presents challenges, including a steep learning curve
associated with mastering modeling techniques and tools. The
quality of the generated code can vary, potentially affecting
efficiency and readability. Furthermore, technological
advancements may necessitate updates to dependent models
and tooling.

Today, we are witnessing the ever-increasing use of Large
Language Models (LLMs) [4] in software development,
especially as a form of code completion or code generation
tools [5]. As with any technology, there are tradeoffs, both
positive and negative, and the modern developer is in an
unenviable situation to choose a position on a spectrum
between conservative, robust, but complex and time consuming
approach, and carefree, but hallucination prone heavy use of
LLMs. Regardless of one’s opinion on such LLM aided tools,
they are very present in the field and are heavily promoted and
integrated into various popular development environments [6].

For this study, CodeCrafter, a data-model-driven code
generator, has been developed. It converts models —
specifically Data Definition Language (DDL) scripts or
JavaScript Object Notation (JSON) specifications — into
functional source code suitable for Spring [7] and React [8]
applications. This generator produces a foundational system
structure with default configurations and functionalities,

Danijela Vukosav et al.

2

reducing development time while enabling the creation of
stable, scalable systems with minimal error risk. The generated
system serves not only as a standalone product but also as a
robust foundation for more complex projects.

II. RELATED WORK

A. Overview of Existing Solutions

The increasing complexity of modern software systems has
spurred a growing need for automated code generation. This
development aims to minimize manual work, eliminate
repetitive tasks, and enhance efficiency, enabling development
teams to focus on more complex problems. Several tools have
emerged in this space, each offering unique functionalities:

• Spring Roo - This tool accelerates application
development within the Spring ecosystem,
enabling rapid generation of CRUD
functionalities. It generates code based on
command-line inputs, maintaining a separation
between automatically generated and manually
written code through the use of aspect files and
annotations. The output includes Java files for
entities, repositories, services, and controllers,
along with configuration files and, optionally, a
simple client application. [9]

• OpenAPI Generator - An open-source tool that
utilizes OpenAPI specifications to generate both
server-side and client-side code, along with
database schemas and documentation. The
generator supports multiple programming
languages and frameworks, allowing users to
define API operations and data schemas via JSON
or YAML documents. Custom templates facilitate
code generation based on user selection through
CLI or graphical interfaces. [10]

• Yeoman Generators - Yeoman automates project
generation through predefined templates known as
generators. Users interact with the CLI to specify
project details, such as name and preferred
technologies. Generators leverage libraries like
Inquirer.js to prompt for user input, tailoring the
output files based on the provided details,
resulting in well-structured project setups. [11]

• CodeSmith Generator - Utilizing predefined
templates and user inputs, CodeSmith automates
the generation of various code types. Templates
can be defined in languages like T4 or Razor, and
user input replaces placeholders within these
templates. The output includes SQL scripts,
backend and frontend code, as well as
configuration and documentation files. [12]

• JHipster - An open-source generator for modern
web applications and microservices, JHipster
supports both server-side (Spring Boot) and client-
side (Angular, React, and Vue) development.
Users are prompted for application configuration,
including authentication type and database
selection. It also allows for code generation based
on JHipster Domain Language (JDL), facilitating
entity modeling through predefined models. [13]

These tools collectively contribute to the automation of
code generation processes, enhancing development efficiency
and promoting higher-quality software output.

B. Comparison with CodeCrafter

The primary objective of various code generators, including
CodeCrafter, is to automate the code generation process to
reduce development time and enhance efficiency. Many
functionalities exhibit similarities across these solutions,
particularly in generating server-side and client-side
implementations that facilitate complete CRUD operations,
along with essential features such as authentication and
authorization.

However, distinct differences exist among these systems.
Some solutions rely on user input or predefined models for
code generation, whereas CodeCrafter utilizes DDL scripts and
JSON files — formats widely recognized in software
development. This approach simplifies the generation process
by eliminating the need for extensive data entry or the
development of specific models. Moreover, CodeCrafter is
designed with a more intuitive interface compared to the
command-line and graphical interfaces of other systems,
thereby enhancing user accessibility.

A notable advantage of CodeCrafter is its rapid code
generation capabilities, allowing for the creation of new
systems in mere milliseconds. Additionally, it offers unique
functionalities not commonly supported by competing
solutions. These include the ability to audit selected tables
through the automatic addition of timestamps and user
identifiers (createdAt, updatedAt, createdBy, and updatedBy),
configurable authorization settings for table columns, visibility
options for table views and single-object views, and the precise
definition of columns that facilitate searching and sorting.

TABLE I. COMPARISON OF AVAILABLE SOLUTIONS

Feature
Spring

Roo

Code

Smith

OpenAPI

Generator
JHipster

Code

Crafter

Generate
backend

Y Y Y Y Y

Generate

frontend
N N N Y Y

Security
and

authen-

tication

Y N N Y Y

User

authori-

zation

N N N Y/N Y

Auto

table

auditing

N N N N Y

Security-

critical

columns

N N N N Y

Modular

data

filtering

N N N Y/N Y

Modular
data

sorting

N N N N Y

Use in
business

systems

Y/N Y Y Y Y

Extensi-
bility

Y/N Y Y/N Y Y

a. Y/N denotes a feature under development or not fully supported

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

3

Conversely, it is important to acknowledge that the
aforementioned solutions have been developed over many
years by substantial teams of developers. As a result, these
systems tend to be more complex and offer a broader range of
capabilities. This complexity includes support for a wider array
of technologies compared to CodeCrafter, which currently
focuses on Spring for backend development and React for
frontend development.

As can be seen from Table I, there is ample space in the
market for a tool that fully provides features missing from
other available systems, such as user authorization, automatic
table auditing, proper handling of security sensitive columns,
as well as the support for modular data filtering and sorting. It
is also worth noting that one must take care of performance
aspects of code generation as well as the possibility to adapt
and extend the solution in use.

III. CODECRAFTER

A. Introduction to CodeCrafter

The CodeCrafter client web application allows users to
upload files that are used as input for code generation.
Currently, the system supports two types of input files: DDL
(Data Definition Language) script and JSON file. Although the
system is limited to DDL scripts for MySQL DBMS, using
JSON files offers a technology-agnostic representation of the
application that will be generated. Uploaded JSON file must
conform to the predefined JSON schema that is used to
describe and validate JSON data.

The uploaded file is sent to the CodeCrafter backend
application through the RESTful API [14]. The backend
application processes input files based on their type. In the case
of the DDL script, the application parses the script to extract
relevant data, such as entity names, attributes, and relationships
and transforms this information into a corresponding JSON
object. In case the input is a JSON file, it is expanded to
include inferred relationships based on column configurations.
After processing the input file the application generates a JSON
object and returns it to the client web application.

The CodeCrafter web application processes the JSON
response and allows the user to configure parameters for the
application that will be generated. First, the user configures
whether to generate a Spring Boot application, a React
application, or both. Afterwards, the user configures
parameters for each entity which includes auditing settings,
column visibility, filtering, and sorting settings. Enabling
auditing allows transparent tracking of who created or changed
each entity and when the change happened.

The user can select which columns will be displayed in
tabular views or detailed views within the React application.
This feature is particularly beneficial for entities with
numerous attributes, helping to simplify the interface and
protect sensitive information, such as passwords. The user can
specify filtering and sorting settings for each entity. Filtering
configuration includes a selection of columns that will support
filtering adjusted to the corresponding data type. For example,
for numeric columns, filtering enables range selections, while
for text columns, it enables partial or full-text searches. The
user can choose one or multiple columns to enable sorting in
ascending or descending order. In the case of sorting multiple
columns, the priority can be defined.

The usage scenario of the system is shown in Fig. 1.

Figure 1. Usage of CodeCrafter System

B. Process of Code Generation

Upon selecting the model and its specifications, users
proceed to the code generation phase. CodeCrafter utilizes pre-
prepared templates, which are source code files derived from a
complete application, tailored to a comprehensive database
schema that encompasses various data types, table
relationships, and structural aspects. Within these templates,
code segments dependent on the specific schema are
represented as placeholders. During generation, CodeCrafter
dynamically replaces these placeholders with values aligned
with the user’s requirements.

The code generation process involves several key steps:

1. Creating the Root Folder – a main folder is created
to represent the future system’s structure top
organizational node.

2. Generating Subsystems – based on user selections:

o A Spring folder is created for back-end
software component generation.

o A react-app folder is created for front-end
single-page web application.

3. Copying Common Files – universal files,
independent of the specific model and
configuration, are copied into the designated
folders.

4. Generating Files from Templates – CodeCrafter
iterates a list of entities for which the code needs

Danijela Vukosav et al.

4

to be generated and replaces placeholders with
actual values, ensuring files are tailored to the
specified system.

5. Downloading the Generated System – upon
completion, users can download the application as
a ZIP file, containing all necessary files for further
development.

This automated approach significantly enhances software
development efficiency, minimizing the need for manual
coding and streamlining the application creation process.

C. Overview of Generated System

The generated application is a web-based platform enabling
users to perform CRUD (Create, Read, Update, Delete)
operations on defined entities. The frontend, developed using
React, offers an intuitive interface for user authentication and
data management, allowing users to enter new data or retrieve
existing records. User requests are transmitted as REST API
calls to the backend, which is built with the Spring framework
and serves as the core component for processing data,
executing business logic, and managing database interactions.
The classic client-server architecture used by the generated
application is illustrated in Fig. 2.

Figure 2. The architecture of application generated by CodeCrafter

The file structure of the generated back-end application in
Spring Boot consists of the following:

• audit – the implementation of AuditorAware and
the required base configuration.

• auth – with controllers for user management as
well as basic authentication/authorization. This
directory also contains the models required for the
proper functioning of user accounts, tokens, and
user roles and permissions. The code is organized
in specification, repository, and service pattern in
order to enable easier understanding and adjusting
of the code by developers.

• security – containing basic functionality required
for working with JWT [15] and related security
functionalities.

• utils – containing various utility functionalities
required for several application components on the
back-end, such as working with filtering and string
manipulation.

• a set of directories for tables present in the
database, one directory per table. Similarly to the
auth section, all functionality is organized in
controller, specification, repository, and service
organization pattern which takes into
consideration foreign key relations between tables
in the database and enables more efficient
maintenance and further development of the
generated code.

The main file structure of the front-end application consist
of the following directories:

• api – directories for general services and hooks.

• authService – that contains the provider and
service used for basic user
authentication/authorization.

• generalComponents – that contains a collection of
components used throughout the application,
divided into the following sets: common, filtering,
form, index, sidebar, and singlePage.

• hooks – that contains hooks for sorting, filtering,
and pagination.

• loginComponents – used for login.

• pages – with one directory per processed table.
Each directory, in turn, contains components,
service and singlePage directories with files
generated for each table. The main components
cover table and table row, header, form and modal
per entity.

• router – which sets up all the basic routes for
generated entities, as well as generic routes for
login and logout.

• styles – with all the CSS files organized for
efficient use and potential adjustments.

• systemUsers – for system-wide user and role
management.

As the generated front-end system uses TypeScript, all the
required types are properly generated and can be used for code

Backend

Spring Boot Application

Users

Administrators

Frontend

React Application

Model.java Repository.java

Service.java Controller.java

Specification.java

REST / HTTP(S)

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

5

completion and syntax checking by development
environments.

The system distinguishes between two types of users,
administrators and regular users, with each user type
possessing a certain set of allowed functionalities:

• Administrators possess elevated privileges,
including the ability to add new users (both
regular and administrative) and assign specific
access rights (view, add, update, delete) for
individual tables.

• Regular users are granted a restricted set of
CRUD operations as defined by an administrator.

Upon the initial startup of the application, a default
administrator account is created in the database with predefined
credentials (username and password). This account can
subsequently be used for logging into the system, after which
the administrator can add further regular users or other
administrators.

The platform also facilitates efficient data management,
featuring functionalities such as filtering and sorting for
improved data visibility and usability. As all the generated
code follows the best practices, it is possible to adapt all of the
functionalities in an efficient and streamlined manner, with the
additional possibility of adapting the source templates in order
to provide the same baseline generated code for multiple
projects, if such a need exists.

D. Generated back-end Application

The generated Spring Boot application provides
comprehensive CRUD (Create, Read, Update, Delete)
functionality for all defined entities, along with robust user
authentication and authorization features. It integrates search
and sorting capabilities with support for pagination.

Each entity is organized within a dedicated folder that
includes all necessary components, such as entity classes,
repositories, service classes, and controllers. User
authentication is managed via the Spring Security framework,
utilizing JWT tokens to secure access.

Configuration details are handled in the automatically
generated application.properties file, where users specify
essential database connection parameters. The application can
be built, tested, and executed using Gradle, which creates all
necessary files, including the build.gradle that outlines required
dependencies.

This application is compatible with Java 17 and the Spring
Boot 3.2.3 framework, ensuring adherence to modern
development standards.

Packages generated for the application are also shown in
Fig. 2 and include: Model.java, Repository.java, Service.java,
Controller.java and Specification.java.

E. Generated Frontend Application

The generated frontend application is a React-based
platform that offers users an intuitive interface for system
interaction.

The generation process automatically creates all necessary
files and configurations for the React application, including

project structure, components, routes, styles, and configuration
files. Users can customize styles and components to fit their
preferences.

The frontend application, as of the writing of this paper, is
built using React version 18.2.0 and Node.js version 20.13.1.

An example of web application look is shown in Fig. 3.

Figure 3. Examples of UI of a generated frontend application

Access is restricted to authenticated users, who must enter
valid credentials on the login page. Upon the first launch, users
are prompted to change the initial password assigned by the

Danijela Vukosav et al.

6

administrator. Session management is handled using JWT
tokens.

Once logged in, users are granted access only to the entities
they are authorized to interact with, with any unauthorized
actions—such as create, edit, or delete—hidden from view.

User authentication is required for application access and
the access control in the system is based around privileges,
with built in support for fine grained access rules for each
generated entity type, as is shown in Fig. 4. Basic permissions
that are supported by the generated application are: CREATE,
READ, UPDATE, and DELETE (as in CRUD) and the names
of privileges are created by concatenation of entity name,
underscore and privilege name in uppercase.

Figure 4. Managing user privileges UI example

IV. PERFORMANCE MEASUREMENTS

While the time required for code generation is rarely seen
as one of the critical performance metrics, in order to fully
integrate code generation tools in modern toolchains, especially
ones using coding assistants, the ability to produce high quality
code in short period of time is of significant value. Scenarios in
which this metric is critical will be more thoroughly described
in discussion section of the paper.

In order to measure the performance of CodeCrafter, a set
of assignments was created, ranging from trivial database
schema with a single table, over a series of progressively
complex schemas with 5, 10, 15, 40, 50, 60, 96, and 121
schemas, and, finally, with a database schema consisting of 192
tables. This wide spectrum of complexities and numbers of
tables covers a vast majority of system sizes. In order to
extrapolate the performance in databases with an even larger
number of tables, a measure of per-table code generation time
should also be observed. In the experiment, the generation time
of Spring and React applications was measured across varying
numbers of entities, employing both serial and parallel
generation approaches.

Serial Generation involved the sequential creation of all
necessary files for each entity, where one application was fully
generated before proceeding to the next.

Given that the same files were generated for each entity,
parallelization of the parts of this process was feasible.

Additionally, due to a well-defined API, both applications
could be generated simultaneously.

Parallel Generation encompassed the simultaneous creation
of both applications, along with the parallel generation of files
for entities within each application.

Performance measurements for the generation of code for
back-end, front-end, and combined front- and back-end
applications, in both serial and parallel generation modes, are
presented in Table II.

TABLE II. PERFORMANCE MEASUREMENTS OF CODECRAFTER

Number

of tables

Spring React Total

Serial Parallel Serial Parallel Serial Parallel

1 13.17 11.90 15.39 17.53 28.56 21.71

5 13.78 12.35 21.14 23.29 34.92 23.94

10 17.43 15.86 33.65 24.04 51.07 24.60

15 19.96 14.49 39.41 25.53 59.37 26.25

40 44.46 18.80 89.41 34.78 133.87 35.60

50 47.66 22.96 101.49 39.07 149.15 40.01

60 74.91 29.09 144.99 44.84 219.90 45.49

96 97.30 34.51 200.44 57.83 297.75 58.77

121 106.51 46.27 226.75 74.95 333.26 74.52

192 155.57 56.60 342.40 91.64 497.97 92.20

a. All times are in milliseconds

The measurement results, recorded in milliseconds,
demonstrated the efficiency and high performance of the
CodeCrafter generator. The accompanying diagram illustrates
that complex structures, such as those with up to 200 entities,
can be generated in less than 100 milliseconds.

From the results, it is obvious that there is an initial start-up
time needed to initialize the system and generate the files for
the first table, while additional tables are processed in, on
average, 0.24 ms (with minimum being 0.11 ms, and maximum
being 0.44 ms) for Spring back-end in parallel mode, and for
React front-end, on average, 0.92 ms (with minimum being
0.44 ms, and maximum being 1.33 ms). This strongly suggests
that the scaling is linear and that the system should work with
satisfactory performance in even larger databases with
hundreds or thousands of tables.

This feature of the system enables its use in very dynamic
development environments as the added time delay by
CodeCrafter is negligible in a very large spectrum of database
sizes and should not interfere with the developer experience.

The results are also graphically presented in Fig. 5.

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

7

Figure 5. Generation times as function of number of tables

V. DISCUSSION

When it comes to feature parity, it is visible from Table I
that none of the existing solutions on the market fulfills all the
analyzed features. Critical features that are not supported, or
are not fully supported include:

• User authorization – this feature is often
“outsourced” to external tools or platforms and is
ignored during the code generation. However,
adding such critical security features after-the-fact
is rarely the best option. Generated code also
seldom supports fine grained user permission
control and the ability to alter it at runtime.

• Automatic table auditing – the ability to provide
data on who and when performed modifications
on a record level can be very useful, or even
required in certain applications. The ability to
provide such functionality with negligible
developer effort is an example of improving
developer experience by code generation tools.

• Security-critical columns – most code generation
tools make no distinction between various
columns and will divulge potentially sensitive or
secret data by default. It is up to the developer to
find and alter the code responsible for hiding the
values of security-critical columns. CodeCrafter,
on the other hand, provides a clear interface that
enables developers to avoid potential security
pitfalls by hiding select columns.

• Modular data filtering and sorting – by offering
developers the ability to define which columns
should be filterable and which should be sortable
by web application end-users, the development
process of potentially complex user interfaces and
interactions can be significantly simplified.

Key observations derived from the analysis of performance
measurement results include:

• No significant performance difference was
observed between serial and parallel generation
for a small number of entities.

• As the number of entities increased, the
advantages of parallel code generation became
more pronounced.

• The total sequential generation time was found to
equal the sum of individual application generation
times.

• Conversely, the parallel generation time was
determined by the longer of the two processes,
which was the React application due to the greater
number of files required compared to the Spring
application.

These findings underscore the scalability and efficiency of
the CodeCrafter generator, particularly when dealing with
larger applications that deal with a significant number of tables
in the database.

Additionally, a static code analysis of the generated code
was performed using the Qodana tool. During this analysis, the
code was examined to identify potential errors, security
vulnerabilities, and other issues. The results confirmed that no
errors or warnings were present, indicating that the generated
code meets high standards of quality and security. This is a
significant finding that demonstrates that the generated code
can represent a solid and secure basis for further development
even in very demanding and sensitive application areas.

A. Modern LLM-aided development environments

Since the appearance of widespread use of LLMs [4] in the
past few years, there exists a clear trend to use LLMs,
especially ones fine-tuned on code datasets, as a means to
generate program code and integrate them closely with popular
development environments, either as a form of a more
powerful code completion tools or as a replacement for code
generators in general [6]. While there are promising results,
there are also some mixed ones as well, especially regarding
security aspects of analyzed or generated code [16].

An additional problem is presented by the fact that the
whole LLM and LLM code completion field is rapidly
developing and any studies deemed current and representative
tend to be outdated in very short time, especially as any tests
proposed or failings identified by authors are quickly ingested
in the next round of model training.

Another approach that has shown promise and is widely
used in various applications of LLMs is the use of Retrieval
Augmented Generation (RAG) which is shown to increase
accuracy and reduce hallucinations in output [17]. RAG
functions by providing the LLM with additional useful data in
the query, but is heavily dependent on the provided data being

Danijela Vukosav et al.

8

valid [18]. As CodeCrafter can generate valid code based on
simple JSON model that can be generated by LLM, it opens an
avenue for extending the functionality of LLM by it using
CodeCrafter as an external tool. More recently, there are have
been industry-wide efforts to standardize similar approaches by
utilizing Model Context Protocol (MCP) [19]. In this scenario,
CodeCrafter would be used as a tool, but could also use
sampling to query the LLM if the need exists. The high
performance of CodeCrafter is very important in this scenario
as any prolonged delays during coding and code completion
severely decrease the developer experience.

VI. CONCLUSIONS

The presented solution, CodeCrafter, represents an
advancement in the field of automated code generation,
streamlining the development process while enhancing
efficiency. By utilizing widely accepted input formats such as
DDL scripts and JSON files, CodeCrafter simplifies the
generation process, allowing users to bypass lengthy code entry
and basic model development.

The intuitive interface further distinguishes CodeCrafter
from traditional command-line and GUI tools, making it
accessible to a broader range of developers. The rapid code
generation capabilities enable the creation of comprehensive
applications—including those with complex structures—within
hundred milliseconds, thus significantly reducing development
time. This feature also makes future use in LLM aided code
completion systems possible without degrading the developer
experience.

Unique functionalities, such as table auditing and
configurable features for column visibility and authorization,
position CodeCrafter as a versatile tool that meets
contemporary software development needs. Although it
currently focuses on Spring for backend and React for frontend
development, it effectively addresses core requirements,
including CRUD operations, authentication, and authorization.

While established competitors offer broader capabilities
and support for a wider array of technologies, CodeCrafter's
focused approach and distinctive features provide a compelling
solution for developers seeking efficiency and simplicity in
code generation. As software development continues to evolve,
tools like CodeCrafter are essential for optimizing workflow
and allowing teams to concentrate on solving complex
challenges, thereby contributing to higher-quality software
outputs.

REFERENCES

[1] M. Fowler, Patterns of enterprise application architecture. Addison-

Wesley, 2012.

[2] T. Stahl, M. Völter, and K. Czarnecki, Model-driven software
development: technology, engineering, management. John Wiley &
Sons, Inc., 2006.

[3] B. Hailpern and P. Tarr, ‘Model-driven development: The good, the bad,
and the ugly’, IBM systems journal, vol. 45, no. 3, pp. 451–461, 2006.

[4] Y. Chang et al., ‘A survey on evaluation of large language models’,
ACM transactions on intelligent systems and technology, vol. 15, no. 3,
pp. 1–45, 2024.

[5] J. T. Liang, C. Yang, and B. A. Myers, ‘A large-scale survey on the
usability of ai programming assistants: Successes and challenges’, in
Proceedings of the 46th IEEE/ACM international conference on
software engineering, 2024, pp. 1–13.

[6] D. Cambaz and X. Zhang, ‘Use of AI-driven code generation models in
teaching and learning programming: a systematic literature review’, in
Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1, 2024, pp. 172–178.

[7] “Spring Boot,” Spring Boot. Accessed: May 1, 2025. [Online].
Available: https://spring.io/projects/spring-boot

[8] “React.” Accessed: May 1, 2025. [Online]. Available: https://react.dev/

[9] “Spring Roo - Reference Documentation.” Accessed: May 1, 2025.
[Online]. Available: https://docs.spring.io/spring-
roo/docs/current/reference/html/

[10] OpenAPITools/openapi-generator. (May 1, 2025). Java. OpenAPI Tools.
Accessed: May 1, 2025. [Online]. Available:
https://github.com/OpenAPITools/openapi-generator

[11] “The web’s scaffolding tool for modern webapps | Yeoman.” Accessed:
May 1, 2025. [Online]. Available: https://yeoman.io/

[12] “CodeSmith Tools.” Accessed: May 1, 2025. [Online]. Available:
https://www.codesmithtools.com/product/generator

[13] Jh. Team, “JHipster - Full Stack Platform for the Modern Developer! |
JHipster.” Accessed: May 1, 2025. [Online]. Available:
https://www.jhipster.tech/

[14] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,
Inc., 2008.

[15] M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
Internet Engineering Task Force, Request for Comments RFC 7519,
May 2015. Accessed: May 1, 2025. [Online]. Available:
https://datatracker.ietf.org/doc/rfc7519/

[16] C. Negri-Ribalta, R. Geraud-Stewart, A. Sergeeva, and G. Lenzini, ‘A
systematic literature review on the impact of AI models on the security
of code generation’, Frontiers in Big Data, vol. 7, p. 1386720, 2024.

[17] P. Lewis et al., ‘Retrieval-augmented generation for knowledge-
intensive nlp tasks’, Advances in neural information processing systems,
vol. 33, pp. 9459–9474, 2020.

[18] H. Tan et al., ‘Prompt-based code completion via multi-retrieval
augmented generation’, ACM Transactions on Software Engineering
and Methodology, 2024.

[19] “Specification,” Model Context Protocol. Accessed: May 1, 2025.
[Online]. Available: https://modelcontextprotocol.io/specification/2025-
03-26

Danijela Vukosav received B.Sc. degree in
electrical engineering from the Faculty of
Electrical Engineering, University of Banja
Luka, Bosnia and Herzegovina. She is
currently studying for M.Sc. degree at the same
institution. She has over four years of
experience in full-stack development for web
and mobile applications using various back-
and front-end technologies. She has worked on
a wide range of projects, including scalable AI-
powered platforms, custom CMS solutions, and

real-time IoT applications. I’m passionate about building high-
performance, user-focused systems, with a strong interest in AI
integration and optimizing complex systems for better user
experience.

Danijela Banjac and M.Sc. degrees in electrical
engineering from the Faculty of Electrical
Engineering, University of Banja Luka, Bosnia
and Herzegovina. She is a senior teaching
assistant and PhD student at the Faculty of
Electrical Engineering, University of Banja Luka
(Bosnia and Herzegovina). She is a member of
M-lab Research Group. Her research interests
include model-driven software development,
business process modelling, object-oriented
information systems, and UML. She has

published several research papers and articles.

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

9

Miloš Ljubojević received the B.Sc. and M.Sc.
degrees in electrical engineering from the
Faculty of Electrical Engineering, University of
Banja Luka, Bosnia and Herzegovina, and the
Ph.D. degree in information technology from
the Faculty of Organizational Sciences,
University of Belgrade, Serbia. He is an
associate professor at the Faculty of Electrical
Engineering, University of Banja Luka. His
teaching topics are in the fields of computer
networks and computer science and

informatics.

Mihajlo Savić received the Diploma Engineer,
M.Sc. and Ph.D. degrees from the Faculty of
Electrical Engineering, University of Banja
Luka, Banja Luka. He is currently employed as
a Assistant professor for the Faculty and is
currently involved in the following areas at the
Department of Computer Science and
Information Technology: operating systems,
information systems, computer networks, and
parallel and distributed computing. He has been
involved in SEE-GRID, SEE-GRID-2, SEE-

GRID-SCI, SEEFIRE, SEEREN2, HP-SEE, EGI-InSPIRE, VI-
SEEM, NI4OS-Europe, and SARNET projects.

