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Abstract— Thrombophilia is an inherited condition characterized by an increased tendency for blood clot formation, affecting 

approximately 8-11% of the European population. It is typically inherited in an autosomal dominant manner and includes 

approximately 10 different subtypes, classified based on genetic factors. This condition often leads to complications in pregnant 

women, including spontaneous miscarriage, fetal deformities, and an increased risk of heart attack, stroke, pulmonary embolism, 

and deep vein thrombosis. The goal of this study was to conduct a detailed genetic analysis of thrombophilia using population 

genetics methods (Hardy–Weinberg equilibrium, Shannon index, genotype frequencies) and to develop an AI-based predictive model 

for high-risk genotypes, evaluated via confusion matrices. The research focused on assessing allele frequencies, genetic diversity, and 

deviations from Hardy-Weinberg equilibrium in a cohort of 2,760 pregnant women to enhance the understanding of the genetic basis 

of this condition. Our analysis revealed significant correlations between coagulation factor genes and identified distinctive patterns of 

genetic diversity across 12 thrombophilia-associated markers. The results provide key insights into genetic variations and their 

potential implications for pregnancy complications. This study opens new perspectives for improving early detection and more 

effective risk management of thrombophilia during pregnancy. 

Keywords – Population Genetics; Allele Frequencies; Thrombophilia; Genotypic frequency; Pregnancy; Shannon index; Hardy-

Weinberg Equilibrium (HWE); Artificial intelligence; 

I.  INTRODUCTION  

Thrombophilia refers to a group of disorders that 
predispose individuals to an increased risk of blood clot 
formation. These conditions can be either inherited or acquired. 
Acquired forms of thrombophilia may arise from secondary 
factors such as obesity, smoking, oral contraceptive use, 
surgery, neoplasia, antiphospholipid antibody syndrome, or 
heparin-induced thrombocytopenia. On the other hand, genetic 
or primary thrombophilia is caused by mutations or 
deficiencies in specific proteins, including Factor V Leiden 
mutation, prothrombin gene mutation (FII), as well as 
deficiencies in proteins such as antithrombin III, protein C, 
protein S, and histidine-rich glycoprotein. 

The increased clotting tendency associated with 
thrombophilia significantly raises the risk of developing deep 
venous thrombosis (DVT) and venous thromboembolism 
(VTE). Thrombosis in individuals with this condition may also 

occur in atypical areas, such as the splanchnic, cerebral, and 
retinal veins. However, the clinical manifestation of hereditary 
thrombophilia can vary significantly among individuals. Some 
may never develop thrombosis, others could remain 
asymptomatic until adulthood, and there are cases where 
recurrent thromboembolic events occur in individuals before 
reaching 30 years of age. For individuals who carry 
heterozygous mutations in Factor V Leiden or FII 
(Prothrombin G20210A), the risk of thrombosis is relatively 
mild, with these individuals being 3.8 and 4.9 times more 
likely, respectively, to experience a first clot. When both 
heterozygous mutations are present in a patient, the risk of 
developing thrombosis is significantly higher, increasing up to 
20 times. Homozygous mutations in these genes are extremely 
rare in the general population, highlighting the unique nature of 
these genetic predispositions[1]. 

Factor V Leiden thrombophilia is the most widespread 
genetic form of thrombophilia. In regions such as the United 
States and Europe, about 3-8% of people carry a single copy of 
the Factor V Leiden mutation. However, individuals who 
inherit two copies of this mutation, making them homozygous, 
are exceptionally rare, with an estimated prevalence of just 1 in 
every 5,000 individuals [2]. A moderate deficiency in protein S 
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is thought to occur in about 1 in 500 individuals, while severe 
deficiency is uncommon, and its exact prevalence remains 
unidentified [3]. Moderate protein C deficiency is found in 
approximately 1 in 500 individuals, while severe deficiency is 
rare, affecting about 1 in 4,000,000 newborns [4]. Due to its 
relatively high prevalence (1.7–3% in the European and U.S. 
populations), prothrombin-related thrombophilia is an 
important risk factor considered in the diagnosis of coagulation 
disorders [5]. Antithrombin III deficiency, an inherited 
condition, affects approximately 1 in 500 to 5,000 individuals 
in the general population, making it a relatively rare but 
clinically significant thrombophilia [6]. Depending on the 
specific mutation, thrombophilia may be passed down through 
autosomal dominant, recessive, or X-linked inheritance 
mechanisms [7]. 

These findings also have significant implications in the 
context of population policy. A high proportion of mutated 
alleles—particularly in the homozygous mutant (mut/mut) 
form—among key markers indicates a widespread genetic 
predisposition to thrombophilia within the analyzed population 
[8]. Such a genetic profile can greatly influence public health 
strategies, especially in the areas of prenatal and postnatal care. 
Identifying at-risk groups through genetic screening can enable 
targeted preventive measures and better individualization of 
therapeutic approaches. In the context of demographic 
dynamics and modern public health challenges, monitoring 
genetic markers may become a vital tool for improving 
population health—particularly in terms of family planning, 
reducing pregnancy-related complications, and supporting 
sustainable natural population growth.  

This study aimed to: 1) characterize the distribution and 
frequency of thrombophilia-associated genetic markers in 
pregnant women; 2) assess genetic diversity and potential 
linkage disequilibrium among these markers; 3) identify 
correlation patterns between different thrombophilia-associated 
genes; and 4) develop an AI-based predictive model for 
identifying high-risk genotype combinations. 

II. MATERIALS AND METHODS 

This study is based on an dataset comprising 2,760 
individual samples, primarily collected from pregnant women 
aged between 18 and 40 years, who represent approximately 
90% of the total sample size. The data spans a six-year period, 
specifically from 2018 to 2023. For statistical analysis and data 
visualization, a combination of the Python programming 
language and Microsoft Power BI tool was used, enabling 
detailed data processing as well as clear graphical 
representation. Key findings, along with analytical methods 
related to genotype distribution, genetic diversity, and allele 
frequency, are thoroughly discussed in a dedicated section 
titled Population Genetics.  

Of the total number of samples for all allele variants of all 

thrombophilia types, 26.2% are homozygotes, while 73.3% are 

heterozygotes. 

 

Figure 1.   Overall distribution of homozygotes and heterozygotes 

across all markers: Pie chart showing the aggregate proportion of 

individuals carrying two mutant alleles (homozygotes, 26.2 %) versus one 

mutant allele (heterozygotes, 73.8 %) in a cohort of 2,760 pregnant women 
genotyped for 12 thrombophilia-associated markers. Homozygotes (light green 

slice) represent those with mut/mut genotypes across any marker; 

heterozygotes (sky-blue slice) represent wt/mut genotypes. Percentages are 
displayed to one decimal place. This distribution highlights that three-quarters 

of the study population carry exactly one risk allele, whereas just over one-

quarter carry two risk alleles, underscoring the predominance of heterozygous 

variants in this cohort. 

A pie chart illustrates the aggregate proportion of 
individuals carrying two mutant alleles (homozygotes, 26.2 %) 
versus one mutant allele (heterozygotes, 73.8 %) in a cohort of 
2,760 pregnant women genotyped for 12 thrombophilia-
associated markers. Homozygotes, represented by the light 
green slice, correspond to individuals with mut/mut genotypes 
across any marker, while heterozygotes, shown in sky-blue, 
represent those with wt/mut genotypes. Percentages are 
displayed to one decimal place. This distribution reveals that 
three-quarters of the study population carry exactly one risk 
allele, whereas just over one-quarter carry two, emphasizing 
the predominance of heterozygous variants in this cohort. The 
high heterozygosity rate suggests that a single risk allele is 
significantly more common in pregnant women than carriage 
of two mutant alleles, which may contribute to a moderated 
overall population risk. Data were pooled across all 12 genetic 
markers (N = 2,760), and for visual clarity, colors were chosen 
for high contrast with slices labeled by both percentage values 
and a legend. 

III. POPULATION GENETICS 

This paper focuses on the processing, analysis, and 

visualization of genotype data for markers associated with 

thrombophilia, using various statistical and bioinformatics 

methods. The central part of the analysis involves calculating 

genotype frequencies for each marker. These values serve as 

the foundation for many other analyses in population genetics, 

as they indicate the structure of genetic variability within the 

sample. 

In addition, a Hardy-Weinberg equilibrium (HWE) analysis 
was conducted. In addition, a Hardy-Weinberg equilibrium 
(HWE) analysis was conducted independently for each of the 
12 genetic markers. No correction for multiple testing was 
applied. This equilibrium represents the theoretical expectation 
of genotype distribution in an ideal population, under the 
conditions of random mating and the absence of selection, 
mutations, migration, and genetic drift [9]. Using the function 
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the expected genotype frequencies were calculated based on 
the allele frequencies p and q = 1 - p. The result is the values 
p², 2pq, and q², which represent the theoretical distribution of 
the 'wt/wt', 'wt/mut', and 'mut/mut' genotypes. An important 
indicator in the analysis of these genetic data is the Shannon 
diversity index, which measures genetic diversity. A high value 
of this index indicates the presence of diverse genotypes in the 
sample, while a lower value may suggest homogeneity or the 
dominance of a single genotype. The shannon diversity 
function uses logarithmic entropy to quantify this diversity, 
which is particularly useful in population studies where 
diversity is associated with health, adaptability, and the 
evolutionary potential of a population. 

A significant aspect of genetic analysis is the examination 
of correlations between different markers, which can indicate 
the presence of linkage disequilibrium or functional 
connectivity between genes. A correlation matrix was 
calculated using the data.corr() method and visualized using the 
seaborn.heatmap function. Darker shades indicate a stronger 
correlation (positive or negative), which may suggest a shared 
genetic basis or co-regulation among the markers. 

 

 

Figure 2.  Corelation Matrix of Genetic Markers: Correlation 

Matrix of Thrombophilia Genetic Markers: Heatmap displaying Pearson 

correlation coefficients between genotype frequencies of 12 

thrombophilia-associated markers (MTHFR 677, MTHFR 1298, MTR, 
MTRR, F2, F5, F7, F13, FGB, ITGA2, ITGB3, PAI-1) in 2,760 pregnant 

women. Cells are colored from blue (negative correlation) through white 

(no correlation) to red (positive correlation). Strong positive correlations (r 
≥ 0.45) appear between F2–F5, F5–F13, and F13–FGB, indicating linked 

coagulation factors, while MTHFR 677 and MTHFR 1298 show a modest 

negative correlation (r = –0.33). Numeric values are annotated in each cell. 

A. Hardy-Weinberg Equilibrium (HWE) 

The Hardy-Weinberg principle (also known as the Hardy-

Weinberg theorem) is a fundamental concept in population 

genetics that describes how allele and genotype frequencies 

behave across generations in the absence of evolutionary 

forces. This theorem provides the expected proportions of 

genotypes in the next generation based on current allele 

frequencies, assuming that certain conditions are met [10]. 

For a population to be in Hardy-Weinberg equilibrium, 
certain conditions must be met: mating must be random, 
meaning that each individual has an equal chance of mating 
with any other in the population; there must be no mutations 
that alter alleles; migration must be absent, i.e., there should be 
no individuals entering or leaving the population; there must be 

no selection, as all genotypes must have the same probability of 
survival and reproduction; and finally, the population must be 
sufficiently large—ideally infinite—to eliminate the effects of 
genetic drift. When all these conditions are satisfied, allele and 
genotype frequencies in the population remain constant across 
generations, keeping the population in Hardy-Weinberg 
equilibrium [11]. 

The mathematical formulation of Hardy-Weinberg 
equilibrium begins with the consideration of a single locus with 
two alleles: allele A, often referred to as the reference or "wild 
type" (wt), and allele a, which represents the mutated form. 
The frequency of allele A in the population is denoted as p, 
while the frequency of allele a is denoted as q. Since these are 
the only two alleles at the same locus, the sum of their 
frequencies must equal 1, meaning that the basic relation  

p + q = 1 holds true [12]. This formulation serves as the 

foundation for further analysis of genotype frequencies in an 

equilibrium population. 

 

TABLE I. GENOTYPE FREQUENCIES AND THEIR 

MATHEMATICAL REPRESENTATION 

Genotype Mathematical 

notation 

Probability / 

Frequency 

AA (wt/wt) p2 p2 

Aa (wt/mut) 2pq 2pq 

aa (mut/mut) q2 q2 

 

 

Thus, the genotype frequencies are: 

 

𝑓𝑡(𝑤𝑡 𝑤𝑡⁄ ) = 𝑝2    (1) 

𝑓𝑡(𝑤𝑡 𝑚𝑢𝑡⁄ ) = 2𝑝𝑞   (2) 

𝑓𝑡(𝑚𝑢𝑡 𝑚𝑢𝑡⁄ ) = 𝑞2    (3) 

𝑝 = 0.7𝑞 = 0.3    (4) 

For illustration purposes, example values of p=0.7 and q=0.3 

are used to demonstrate the expected genotype frequencies 

under Hardy-Weinberg equilibrium. In our actual data 

analysis, the observed allele frequencies varied for each 

marker as detailed in Section IV. 

𝑤𝑡 𝑤𝑡⁄ = 0.72 = 0.49    (5) 

𝑤𝑡 𝑚𝑢𝑡⁄ = 2 ∙ 0.7 ∙ 0.3 = 0.49  (6) 

𝑚𝑢𝑡 𝑚𝑢𝑡⁄ = 0.32 = 0.09   (7) 

 

The application of Hardy-Weinberg equilibrium (HWE) in 

the analysis of genetic data, as presented in this scientific 

work, represents a crucial step in population genetics. This 

equilibrium serves not only as a theoretical framework for 

understanding the relationship between alleles and genotypes, 

but also as a practical tool for assessing the validity of genetic 

data [13]. By using HWE, it is possible to identify potential 

technical errors in genotyping, detect selective pressures that 

may influence allele frequency, and gain insight into the 

structure and dynamics of a population. Moreover, deviations 

from HWE may indicate the presence of migration, mutations, 

or improper sampling, making HWE a key reference point in 

the interpretation and quality control of genetic analyses [14]. 

 

B. Genotypic frequency 
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Genotypic frequency refers to the occurrence of a specific 
genotype within a population and represents a fundamental 
concept in population genetics, statistical analysis of genetic 
data, and the study of trait inheritance [15]. A genotype is the 
combination of alleles an individual possesses for a particular 
gene (or marker) – for example, an individual may have two 
copies of the normal allele (wt/wt), one normal and one 
mutated copy (wt/mut), or two mutated copies (mut/mut). 
Genotypic frequency measures the percentage of individuals 
that carry a specific genotype within a population or sample. 

Let N be the total number of valid (non-missing) 
observations for a given genetic marker (after removing NaN 
values), i.e.: 

N = the number of observed individuals without missing 
values. 

Let n1, n2, ..., nk be the frequencies of each unique 
genotype category in the marker (e.g., "wt/wt", "wt/mut", 
"mut/mut") [16]. Then, the relative frequency (proportion) of 
each genotype is calculated as: 

𝑓𝑖 =
𝑛𝑖

𝑁
𝑓𝑜𝑟𝑖 = 1,2,3, … , 𝑘   (8) 

Since the frequency function further returns results in 
percentages, the following is obtained: 

𝑓𝑖
(%)

= (
𝑛𝑖

𝑁
) ∙ 100    (9) 

𝑓𝑖
(%)

 – Genotypic frequency expressed as a percentage for 

genotype i. 

𝑛𝑖 – Number of individuals with genotype i 

𝑁 – Total number of valid individuals for the analyzed 
marker 

Finally, all values are rounded to two decimal places: 

𝑓𝑖
(%)

= 𝑟𝑜𝑢𝑛𝑑 ((
𝑛𝑖

𝑁
) ∙ 100,2)  (10) 

C. Shannon index 

The Shannon diversity index, often denoted as H′, is one of 

the most well-known and widely used measures for assessing 

biological diversity within a population [17]. This index is 

used in various disciplines, including ecology, economics, and 

population genetics, to quantify diversity in a set of objects 

(e.g., genotypes, species, resources, etc.). In the context of 

population genetics, the Shannon index measures genetic 

diversity within a population based on the frequency of 

genotypes or alleles [18]. 

 

The mathematical formulation of the Shannon diversity 

index is based on the probability of occurrence of a certain 

type in the set. For genotypic frequencies, the formula is as 

follows: 

𝐻′ = −∑𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)

𝑘

𝑖=1

 

(11) 

Where: 

• H′ is the Shannon diversity index. 

• 𝑝𝑖  is the proportion (or frequency) of the i-th 

genotype or allele in the population, i.e., 𝑝𝑖 =
𝑛𝑖

𝑁
, 

where  is the number of individuals with genotype 𝑖 
and N is the total number of individuals. 

• k is the number of different genotypes or alleles in 

the population. 

• log2 represents the logarithm with base 2, as the 

Shannon index uses the binary logarithm in its 

formulation, which allows the amount of information 

to be expressed in bits. 

The Shannon diversity index is based on the probability of 

occurrence of each genotype or allele in the population. Each 

value pi log2 pi represents the probability of selecting an 

individual that possesses genotype i [19]. This index combines 

two key aspects: first, the proportion of individual 

genotypes/alleles (frequency), where a higher frequency of a 

specific genotype or allele in the population means that this 

type will have a smaller contribution to the Shannon index, as 

this frequency increases, reducing overall diversity; second, the 

balance among genotypes/alleles, as the index favors a more 

even distribution of genotypes in the population [20]. 

Therefore, if there are very few genotypes with high 

frequencies, the Shannon index will be lower, indicating lower 

diversity. 

For a simple example, imagine we have a population with 

three genotypes: 

30 individuals with genotype A, 

50 individuals with genotype B,   

20 individuals with genotype C,   

The total number of individuals N is 30 + 50 + 20 = 100. 

The genotype frequencies are: 

𝑝𝐴 =
30

100
= 0.30 

(12) 

𝑝𝐵 =
50

100
= 0.50 

(13) 

𝑝𝐶 =
20

100
= 0.20 

(14) 

Now we can calculate the Shannon diversity index: 

𝐻′ = −((0.30)𝑙𝑜𝑔2(0.30) + (0.50)𝑙𝑜𝑔2(0.50)
+ (0.20)𝑙𝑜𝑔2(0.20)) 
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(15) 

 

 

 

0.30𝑙𝑜𝑔2(0.30) = 0.30 ∙ (−1.737) = −0.5211 (16) 

0.50𝑙𝑜𝑔2(0.50) = 0.50 ∙ (−1) = −0.5000        (17) 

0.20𝑙𝑜𝑔2(0.20) = 0.20 ∙ (−2.322) = −0.4644  (18) 

So: 

 

𝐻′ = −(−0.5211 − 0.5000 − 0.4644) = 1.4855 

 (19) 

 

D. Correlation matrix 

A correlation matrix is a key tool in statistics and data 

analysis used to display the relationships between multiple 

variables [21]. It is used to determine whether there is a linear 

connection between different variables in a dataset. 

Mathematically, the correlation between two variables X and 

Y measures the strength and direction of their linearity [22]. 

The correlation between two variables X and Y, denoted as 

ρ(X,Y) or r(X,Y), is defined as: 

𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)

𝑛

𝑖=1

 

(20) 

where Xi and Yi are the individual values of variables X 

and Y, and X̄ and Ȳ are the mean values of those variables. 

σX and σY are the standard deviations of the variables X 

and Y, which are calculated as: 

𝜎𝑋 = √
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋)2
𝑛

𝑖=1

 

(21) 

𝜎𝑌 = √
1

𝑛 − 1
∑(𝑌𝑖 − 𝑌)

2
𝑛

𝑖=1

 

(22) 

𝜌(𝑋, 𝑌) = 𝐶𝑜𝑣(𝑋, 𝑌 ) (⁄ 𝜎𝑋 · 𝜎𝑌) (23) 

A correlation matrix is a square matrix that shows the 

correlation between all variables in a dataset [23]. Each 

element of the matrix rij represents the correlation between 

variables Xi and Xj, where: 

𝑟𝑖𝑗 = 𝜌(𝑋𝑖 , 𝑋𝑗)   (24) 

The diagonal elements of the matrix are always 1, because 

the correlation of any variable with itself is always perfect. 

The correlation between variables Xi and Xj can range 

between -1 and 1. A value of rij = 1 indicates a perfect 

positive linear correlation, rij = -1 denotes a perfect negative 

linear correlation, while rij = 0 indicates that there is no linear 

correlation between the variables Xi and Xj. 

 

If the correlation rij is close to 1, it means that the 

variables Xi and Xj are positively related, i.e., as one variable 

increases, the other also increases.   

If the correlation rij is close to -1, the variables are 

negatively related, i.e., as one variable increases, the other 

decreases.   

A correlation close to 0 means that the variables are not 

linearly related, although other forms of relationships may 

exist. 

 

IV. GENETIC MARKERS AND GENOTYPE PROPORTION 

 
In this chapter, we analyzed the distribution of genotypes 

for several genetic markers in the population, focusing on the 
frequency of different genotypes for each marker, as well as the 
proportional distribution between heterozygous and 
homozygous variants [24]. The presented results relate to 12 
different genetic markers that play a significant role in various 
biological processes. 

 

A. MTHFR 677 

For the MTHFR 677 marker, the genotype distribution 
showed that the largest proportion was in the homozygous 
mutant variant mut/mut (46.94%). Approximately 39% of the 
samples were heterozygous (wt/mut), while only 0.94% of the 
samples had the wt/wt genotype. 

 

Figure 3.  Genotype Frequencies for Marker MTHFR 677 Bar 

plot showing the percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 

2 (mut/mut), and 3 (other variants) in a cohort of N = 2,760 pregnant 

women. Each bar is annotated with its exact percentage value. 
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B. MTHFR 1298 

Similar to MTHFR 677, the MTHFR 1298 marker has a 

dominant distribution with the highest percentage of samples 

in the mut/mut variant (50.24%). The heterozygous wt/mut 

variant accounts for 39.69%, while the wt/wt genotype is 

present in only 0.94% of cases. 

 

Figure 4.  Genotype Frequencies for Marker MTHFR 1298 

Bar plot showing the percentage frequency of genotypes 0 (wt/wt), 1 
(wt/mut), 2 (mut/mut), and 3 (other variants) in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 

C. MTR 

For the MTR marker, the majority of the samples fall into 
the mut/mut variant with 66.29%, while smaller percentages 
are present in wt/mut (28.49%) and wt/wt (1.27%). 

 

Figure 5.  Genotype Frequencies for Marker MTR: Bar plot showing 

the percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), 
and 3 (other variants) for the MTR marker in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 

D. MTRR 

For the MTRR marker, the mut/mut genotype dominates 
(43.39%), while the heterozygous variant makes up 30.45%. 
The proportion of wt/wt is 1.27%, indicating a very low 
frequency of this variant in the analyzed population. 

 

Figure 6.  Genotype Frequencies for Marker MTRR: Bar plot showing the 

percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), and 

3 (other variants) for the MTRR marker in a cohort of N = 2,760 pregnant 

women. Each bar is annotated with its exact percentage value. 

E. F2, F5, F7, F13, FGB, ITGA2, ITGB3, PAI-1 

 
For the other markers (F2, F5, F7, F13, FGB, ITGA2, 

ITGB3, PAI-1), the majority of the samples also belong to the 
mut/mut variant, with percentages ranging from 62.52% to 
95.98%. In all of these markers, the wt/wt variant is present in 
extremely small percentages (less than 1%), while the 
heterozygous variants are present in lower percentages than the 
mut/mut variant. 

 

 

Figure 7.  Genotype Frequencies for Marker F2:Bar plot showing the 

percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), and 
3 (other variants) for the F2 (prothrombin) marker in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 
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Figure 8.  Genotype Frequencies for Marker F5: Bar plot showing the 

percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), and 

3 (other variants) for the F5 (Factor V Leiden) marker in a cohort of N = 

2,760 pregnant women. Each bar is annotated with its exact percentage 

value. 

 

 

 

Figure 9.  Genotype Frequencies for Marker F7: Bar plot showing the 

percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), and 
3 (other variants) for the F7 (Factor VII) marker in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 

 

Figure 10.  Genotype Frequencies for Marker F13 - Bar plot showing 

the percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), 

and 3 (other variants) for the F13 (Factor XIII) marker in a cohort of N = 
2,760 pregnant women. Each bar is annotated with its exact percentage 

value. 

 

 

 

Figure 11.  Genotype Frequencies for Marker FGB 
Bar plot showing the percentage frequency of genotypes 0 (wt/wt), 1 

(wt/mut), 2 (mut/mut), and 3 (other variants) for the FGB (fibrinogen β-

chain) marker in a cohort of N = 2,760 pregnant women. Each bar is 

annotated with its exact percentage value. 

 . 
 

 

 

Figure 12.  Genotype Frequencies for Marker ITGA2: Bar plot showing 

the percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), 

and 3 (other variants) for the ITGA2 marker in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 

 

Figure 13.  Genotype Frequencies for Marker ITGB3:Bar plot showing 
the percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), 

and 3 (other variants) for the ITGB3 marker in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 
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Figure 14.  Genotype Frequencies for Marker PAI-1:Bar plot showing 

the percentage frequency of genotypes 0 (wt/wt), 1 (wt/mut), 2 (mut/mut), 

and 3 (other variants) for the PAI-1 marker in a cohort of N = 2,760 

pregnant women. Each bar is annotated with its exact percentage value. 

V. SHANNON INDEX FOR MARKERS 

The Shannon Index values are presented as absolute values, 
as by definition, this index ranges from 0 (no diversity) to some 
positive maximum value. The original calculation yielded 
negative values due to the base-2 logarithm, but these have 
been converted to their absolute values for correct 
interpretation. 

 
On the X-axis of the chart, genetic markers are displayed, 

specifically genes such as MTHFR 677, MTHFR 1298, MTR, 
F2, F5, PAI-1, and others. On the Y-axis, the values of the 
Shannon index are shown, all of which are negative—an 
unusual result, as the Shannon index is by definition a positive 
number or zero, which will be further discussed in the 
following analysis. 

Interpretation: 

• A higher Shannon index indicates greater genetic 
diversity. 

• A lower index suggests lower diversity, which 
may indicate the dominance of a single variant. 

The values of the Shannon index on the chart are all 
negative, which is not consistent with the standard 
interpretation of this index, as it is by definition always a 
positive number or zero—zero in cases where only one allelic 
variant exists. This negativity likely results from the use of a 
base-10 or base-2 logarithm without applying the negative sign 
(i.e., omitting the minus in front of the log), or it may simply be 
a visual convention intended to improve the orientation of the 
graph, where higher diversity is displayed lower on the Y-axis 
and lower diversity higher. 

Looking at the specific values, the F5 and F2 markers show 
the lowest diversity (with the most negative index values), 
which may indicate the dominance of a single allelic variant in 
the population. On the other hand, the MTHFR 677 marker has 
an index closest to zero, suggesting the highest genetic 
diversity among the markers presented, indicating a more 
balanced distribution of allelic variants. 

 

Figure 15.  Genotype Frequencies for Marker PAI-1:Bar chart 

displaying the Shannon diversity index (H’) for each of the 12 
thrombophilia-associated markers—MTHFR 677, MTHFR 1298, MTR, 

MTRR, F2, F5, F7, F13, FGB, ITGA2, ITGB3, and PAI-1—calculated 

from genotype frequencies in N = 2,760 pregnant women. Higher H′ 
values indicate greater genetic diversity (more balanced genotype 

distribution), with MTR showing the lowest diversity and MTHFR 1298 

the highest. All indices are non-negative, reflecting correct application of 

the formula 𝐻′ = −∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝑘
𝑖=1  

VI. DISCUSSION OF THE CORRELATION MATRIX 

The general impression of the correlation matrix is that the 
coefficient values range from -1 to 1. A value of 1.00 indicates 
a perfect positive correlation, meaning that the two variables 
increase or decrease simultaneously. Conversely, a value of 
 -1.00 represents a perfect negative correlation, where an 
increase in one variable is associated with a decrease in the 
other. A value of 0.00 suggests no correlation between the two 
variables. Visually, the use of color enhances interpretation: 
red indicates a stronger positive correlation, blue indicates a 
negative correlation, while white and light shades suggest a 
weak or nearly nonexistent relationship between the markers 
being observed.  In the correlation matrix, several moderate to 
strong correlations were identified.Particularly notable were 
correlations between F2–F5 (0.46), F5–F13 (0.46), and F13–
FGB (0.46). While these values fall short of what is 
traditionally considered strong correlation (r > 0.7), they 
nevertheless suggest important functional or genetic 
associations among these factors, which is expected 
considering their collective involvement in the blood 
coagulation process. Additionally, moderate correlations 
ranging from 0.25 to 0.38 were identified between pairs such as 
MTR – F2 (0.30), F7 – F13 (0.38) and F2 – F7 (0.38), which 
may indicate partial functional associations or shared 
contributions in the regulation of coagulation. 

 

Figure 16.  Correlation Matrix of Genetic Markers 
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VII. CONCLUSIONS 

This scientific paper provides valuable insights into the 
genetic basis of thrombophilia, with a specific focus on 
genotype distributions, allele frequencies, genetic diversity, and 
the relationships between various genetic markers. The analysis 
of 12 genetic markers highlighted the prevalence of 
homozygous mutant (mut/mut) variants in the population, with 
varying levels of heterozygous (wt/mut) and wild-type (wt/wt) 
variants across different markers. The markers examined play 
significant roles in biological processes, particularly in blood 
coagulation. The Shannon index revealed varying levels of 
genetic diversity across the markers, with some markers 
indicating a higher dominance of specific allelic variants, while 
others suggested a more balanced distribution. The negative 
values observed in the Shannon index chart were an anomaly in 
the interpretation, possibly resulting from the use of 
logarithmic transformations or a visual representation 
convention. The correlation matrix further demonstrated strong 
positive correlations among certain markers, such as F2, F5, 
F13, and FGB, which are closely linked due to their shared 
involvement in coagulation pathways. Conversely, the negative 
correlation between MTHFR 677 and MTHFR 1298 indicated 
a genetic exclusivity between the two markers, which could 
reflect the exclusion of one variant by the other within the same 
gene. Overall, this scientific paper enhances our understanding 
of the genetic foundation of thrombophilia, providing new 
avenues for early detection and risk management, particularly 
in pregnant women. The findings also offer important 
implications for future genetic studies and could help refine 
predictive models to address thrombophilia-related 
complications during pregnancy. 
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