

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

27

Original research paper
UDC 528.23:[005.22:658.51

 DOI 10.7251/IJEEC2501027P

Residue Number System-Based Hash Function:

Design and Cryptographic Analysis

Milija Pavlović1, Tijana Talić2, Boris Damjanović3, Negovan Stamenković1

1 Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia

2Pan-European university “Aperion” Banjaluka, Republic of Srpska, BiH
3Faculty of Information Technologies and Engineering, Union- Nikola Tesla University, Belgrade, Serbia

 E-mail address: milija.pavlovic@pr.ac.rs, tijana.z.talic@apeiron-edu.eu, boris.damjanovic@fpsp.edu.rs, negovan.stamenkovic@pr.ac.rs

Abstract— In this paper, we propose a novel cryptographic hash function based on the Residue Number System (RNS). The design

leverages the inherent parallelism of RNS to enhance computational efficiency and resilience against certain classes of attacks. Through

modular processing across independent residues, the function achieves notable improvements in hardware acceleration capabilities,

making it particularly suitable for resource-constrained environments. To assess the robustness of the proposed function, we conduct a

series of tests including the distribution of Hamming weights, bit balance evaluation, and avalanche effect analysis. The results

demonstrate that the hash function produces uniformly distributed outputs, exhibits strong avalanche characteristics, and maintains

high resistance to input structure correlation. These properties confirm the potential of the proposed RNS-based approach for secure

and efficient hashing in modern cryptographic applications.

Keywords-hash functions;residue number system; parallelism;avalanche effect;bit balance;

I. INTRODUCTION

In modern cryptography, hash functions are considered one

of the most significant components, and their application

encompasses a wide range, including ensuring security in

communication, data integrity, and search optimization [1].

Although they have a seemingly simple foundation, the

implementation and design of hash functions can represent an

extremely complex process, for which a deep understanding of

mathematical and computational principles is essential [2].

Hash functions can be described as methods that transform

messages of varying lengths into hash values of fixed length

[3]. The most significant properties of a hash function are:

• A hash function can be used on a block of data of

varying sizes.

• The hash function produces an output of fixed length.

• The function H(x) is easy to compute for any given x,

which makes it practical for implementation in both

hardware and software (where x represents the input

given to the hash function).

• For any given hash value h, it is computationally

impractical to determine x such that H(x) = h. This

characteristic is referred to in the literature as one-

wayness.

• For any given block x, it is computationally

impractical to identify y ≠ x such that H(y) = H(x).

This property is known as weak collision resistance.

• It is computationally impractical to find any pair x

and y such that H(x) = H(y). This property is called

robust resistance to collisions [4].

Hash functions are categorized into two types: keyed and

unkeyed. Keyed hash functions utilize both a message and a

confidential key, whereas unkeyed hash functions depend

exclusively on the input message [5]. Keyed functions render

it exceedingly challenging for adversaries to produce identical

hash results without possessing the secret key. Nevertheless,

due to the enhancement of computational capabilities and

cryptanalytic instruments, antiquated hash algorithms have

grown progressively susceptible to assaults. Ensuring security

standards and safeguarding against threats necessitates the

creation of advanced, more resilient cryptographic algorithms

[6].
 The functionality of widely utilized hash algorithms,

including notable examples like MD4, MD5, SHA-1, SHA-2,
and SHA-3, relies on the execution of diverse arithmetic,
logical, and algebraic operations. These algorithms have
demonstrated unreliability over time, revealing specific
vulnerabilities to collision-based attacks [7]. Moreover, the
application of linear processes in some hash function
algorithms may augment their susceptibility to particular
cryptographic assaults [8].

Hash functions are predominantly utilized in cryptography,
where they are essential for maintaining data confidentiality
and validity. Cryptographic hash functions, specifically SHA-2

This paper is a revised and expanded version of the paper presented at

the XXIV International Symposium INFOTEH-JAHORINA 2025

Identify applicable sponsor/s here. If no sponsors, delete this text box.

(sponsors)

Milija Pavlović et al.

28

and SHA-3, are engineered to satisfy rigorous standards. A
primary criterion is collision resistance, signifying that it is
virtually infeasible to identify two distinct inputs yielding
identical hash values [9]. Due to these characteristics, hash
functions are essential in secure communication protocols,
digital signatures, and message authentication.

Furthermore, hash functions are extensively employed in
the organization and efficient retrieval of big databases. Hash
tables facilitate rapid data retrieval and management, hence
conserving time and computational resources greatly. This use
is particularly significant in domains such as search engines,
data repositories, and time-critical applications [10].

The advancement and refinement of hash functions
encounter difficulties due to the exponential increase of data in
contemporary society. The growing demand for data
processing in distributed systems and cloud contexts
underscores the significance of scalability and efficiency in
hash functions. Furthermore, the rise of novel security
vulnerabilities necessitates the continual enhancement of
cryptographic algorithms to address the challenges presented
by sophisticated assaults [11].

Currently, advancements in hash functions transcend their
use in conventional systems, encompassing emerging
technologies like blockchain and cryptocurrencies. Hash
functions underpin processes such as "proof of work" in
cryptocurrencies like Bitcoin, ensuring the irreversibility and
verifiability of transactions within a distributed framework. In
machine learning and artificial intelligence, hashing techniques
are utilized to compress data and enhance algorithmic speed
[12].

Current hash algorithms, including SHA-2 and SHA-3,
have constraints on computational cost, vulnerability to side-
channel attacks, and efficiency in hardware applications. The
suggested methodology utilizing the Residue Number System
(RNS) promotes efficiency through simultaneous execution of
modular activities and bolsters resilience against certain attack
vectors. Additionally, RNS-based hash algorithms can be
refined for hardware acceleration, rendering them appropriate
for resource-limited settings [13].

II. HASHING BASED ON TRADITIONAL MATHEMATICAL

PRINCIPLES

Hash functions are among the fundamental algorithms in
cryptography and computer science in general. Their primary
role is to transform input messages of arbitrary length into
output values of fixed length. Some of the most popular hash
functions that have been used throughout history up to the
present day include: MD4, MD5, RIPEMD, SHA-1, SHA-2,
and SHA-3. Some of these functions are derived from one
another, while others are based on entirely different approaches
[14].

When it comes to the operations used to process messages
in hash functions, the most common ones include:

• Bitwise operations – such as AND, OR, or XOR, are
used to manipulate bits in a way that is optimized for
processor efficiency.

• Bit rotations and shifts – help distribute information
evenly throughout the hash.

• Message padding – adding bits to the end of the
message so that its length becomes divisible by the
block size.

• Mixing and permutations – the order of bits in the
message is shuffled across different rounds to increase
resistance against analytical attacks.

• Arithmetic operations – used to combine message
components in an efficient and nonlinear manner.

• Compression functions – specialized mathematical
functions that reduce the size of data to a fixed length
[15].

III. RESIDUE NUMBER SYSTEM

The Chinese Remainder Theorem, which states that an

integer is represented as a set of remainders with respect to a

set of pairwise coprime moduli, is the foundation of the

unique, unconventional, but incredibly effective Residue

Number System (RNS) [16]. Although this method of

representing numbers has been around since ancient Chinese

mathematics, it wasn't until the 18th and 19th centuries that it

was formally expressed mathematically [17] [18]. The need

for parallel data processing and faster arithmetic operations

without carry propagation, which are features of RNS, sparked

a lot of interest in RNS in the second half of the 20th century,

when it came to its application in computing and digital signal

processing.

A significant benefit over the traditional binary system is

the residue number system's high degree of parallelism, lower

latency, and faster speed, which are made possible by the

independent execution of operations like addition, subtraction,

and multiplication on integers within each modulus. Because

of these advantages, RNS is being used more and more in

high-performance processors, embedded systems, digital

signal processing systems, and image processing processors

[19].

In cryptography, this system is especially significant

because it can speed up modular arithmetic, which is essential

for algorithms like RSA, ECC, and other public-key

systems—especially in hardware implementations where side-

channel attack resistance is critical [20]. Furthermore, RNS is

ideally suited for implementation in hash functions because its

parallel nature allows for efficient hardware implementation,

which is crucial in systems where hashing must be quick and

frequent (e.g., blockchain technologies, cryptographic

databases, etc.), and modular arithmetic allows for the creation

of a large number of distinct hash values with minimal

collision risk.

The advantages of RNS in particular domains, like secure

and embedded systems, make it a useful tool in contemporary

digital arithmetic, despite some of its drawbacks, such as more

complicated comparison operations, sign determination, and

conversion between number systems [21].

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

29

IV. RESIDUE NUMBER SYSTEM HASH FUNCTION

Let a message M of length N be given. First, the message

is padded with zeros to ensure that its length n is divisible by

64 . Formaly, if / 64N   is the smallest integer greater than

or equal to, then:

64 / 64n N=    

The padded message *
M has length n , and its content is:

* || 0 −=
n N

M M

where 0 −n N
 is a string of zeros of length n N− , аnd ||

denotes concantenation.

Then, the message *
M is divided into t blocks

iB each of

length 64 bits:

*

1 2|| || || ,=
t

M B B B…
64

n
t =

A. Block processing using moduli

For each block
iB , a set of moduli  1 2 8, ,...,x x x is used,

where:

1 2 3 4 5 6211, 223, 227, 229, 233, 239,x x x x x x= = = = = =

7 8241, 251x x= = ,

and all moduli are pairwise coprime

After selecting of moduli, the remainder and quotient are

computed for each modulus:

,i ja =
iB mod

ix , ,i j

i

A
x

 
=  
 

i
B

, j   1,2,...,8

B. Iterative processing

After computing  , ,,i j i ja A , further iterative processing is

performed through the following steps:

1. Computation of new values for remainders and

quotients:

• For remainders:

(), , ,i j i j i jb A a= + mod
jx , j   1,2,...,8 .

• For quotients:

(), ,

,

i j i j

i j

j

A a

x

 +
 =
  

B , j   1,2,...,8 .

2. Continuation of processing with previous results:

From the expressions above, further processing

yields:

(), , ,i j i j i jc b= +B mod
jx ,

(), ,

,

i j i j

i j

j

b
C

x

 +
 =
  

B
.

The process is repeated for

 , ,,i j i jd D ,  , ,,i j i je E ,  , ,,i j i jf F ,  , ,,i j i jg G ,  , ,,i j i jh H .

C. Formal expression for the general step

For each step k (where 1k ), the following is

computed :

() () ()()1 1

, , ,

k k k

i j i j i jx X x
− −

= + mod
jx ,

()

() ()()1 1

, ,

,

k k

i j i jk

i j

j

X x
X

x

− − +
 =
 
 

,

where ()0
, ,i j i jx a= and ()0

, ,i j i jX A= .

This process continues until the final step, where we obtain the

set of results  , ,,i j i jh H for each block
iB .

D. Algorithm I part

INPUT: Message M, length N

SET: x = [211, 223, 227, 229, 233, 239, 241, 251] // Moduli

SET: n = CEIL (N / 64) * 64 // Adjust message length to be
divisible by 64

APPEND zeros to the end of message M until its length
becomes n

DIVIDE message M into t blocks B[1], B[2], ..., B[t] of 64
bits each

// Initialization of values for computation

FOR each block B[i], where i is from 1 to t:

 FOR each modulus x[j], where j is from 1 to 8:

 // Step 1: Compute initial values

 a[i][j] = B[i] MOD x[j]

 A[i][j] = FLOOR(B[i] / x[j])

 // Iterative computation

 b[i][j] = (A[i][j] + a[i][j]) MOD x[j]

 B1[i][j] = FLOOR((A[i][j] + a[i][j]) / x[j])

 c[i][j] = (B1[i][j] + b[i][j]) MOD x[j]

 C[i][j] = FLOOR((B1[i][j] + b[i][j]) / x[j])

Milija Pavlović et al.

30

 d[i][j] = (C[i][j] + c[i][j]) MOD x[j]

 D[i][j] = FLOOR((C[i][j] + c[i][j]) / x[j])

 e[i][j] = (D[i][j] + d[i][j]) MOD x[j]

 E[i][j] = FLOOR((D[i][j] + d[i][j]) / x[j])

 f[i][j] = (E[i][j] + e[i][j]) MOD x[j]

 F[i][j] = FLOOR((E[i][j] + e[i][j]) / x[j])

 g[i][j] = (F[i][j] + f[i][j]) MOD x[j]

 G[i][j] = FLOOR((F[i][j] + f[i][j]) / x[j])

 h[i][j] = (G[i][j] + g[i][j]) MOD x[j]

 H[i][j] = FLOOR((G[i][j] + g[i][j]) / x[j])

OUTPUT: h[i][j] and H[i][j] for all i in {1, ..., t} and j in {1, ...,
8}

E. Computing final residues using XOR operation

For each modulus
jx ()1,...,8j = and the corresponding

values , , , , , , , ,j j j j j j j j ja b c d e f g h H , the final residue
jostaci

is defined as:

j j j j j j j j j jostaci a b c d e f g h H=        

Here,  denotes the bitwise XOR logical operation.

F. Converting the result to an 8-bit binary representation

Each residue
jostaci is converted into a binary

representation with exactly 8 bits, by adding leading zeros if

necessary. This representation is denoted as _ jb ostaci :

()_ j jb ostaci bin ostaci= ,

with leading zeros added to reach a total length of 8 bits.

G. Concatenation of binary representations

The final hash hesF is obtained by concatenating the binary

representations:

1 2 3 4_ || _ || _ || _ ||hesF b ostaci b ostaci b ostaci b ostaci=

5 6 7 8|| _ || _ || _ || _b ostaci b ostaci b ostaci b ostaci .

Here, || denotes the operation of concatenating binary strings.

H. Result

The final hash hesF is a binary string of legth 64 bits,

representing the concatenation of all individual binary

residues.

I. Algortihm II part

// 1. Computing final remainders using XOR operation

FOR j ← 1 TO 8 DO

 remainders[j] ← a[j] XOR b[j] XOR c[j] XOR d[j] XOR

e[j] XOR f[j] XOR g[j] XOR h[j] XOR H[j]

// 2. Converting results to 8-bit binary representation

FOR j ← 1 TO 8 DO

 b_remainders[j] ← ConvertTo8BitBinary(remainders[j])

// 3. Concatenating binary representations

binary_combined ← ""

FOR j ← 1 TO 8 DO

 binary_combined ← binary_combined + b_remainders[j]

// 4. Assigning the final hash

finalHash ← binary_combined

// Function to convert a number to an 8-bit binary
representation

FUNCTION ConvertTo8BitBinary(number):

 binary_rep ← ToBinary(number)

 IF Length(binary_rep) < 8 THEN

 binary_rep ← AddLeadingZeros (binary_rep, 8 -

Length(binary_rep))

 RETURN binary_rep

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

31

A graphical representation of the complete algorithm is

given in Fig. 1.

V. MEASURING EFFICIENCY

A key component of assessing cryptographic hash functions

is their efficiency and output transformation quality

measurement. Maintaining security characteristics like

confusion and diffusion depends on several tests and measures

used to guarantee that tiny input changes result in

unpredictable and extensive output changes.

A. Distribution of Hamming weights in the outputs

The distribution of Hamming weights in the output hashes

serves as one of the indicators of the hash function's quality.

Ideally, the output should contain approximately equal

numbers of ones and zeros, which indicates that the hash

function is unbiased and evenly distributes the output bits.

Using a sample of 1000 independent hashings of random

inputs, Fig. 2. examines the distribution of Hamming weights

in the outputs of a 64-bit hash function. The horizontal axis

indicates the test index, and the vertical axis shows the number

of bits in each generated hash that are set to logical one ("1").

With a distribution that oscillates within the bounds

anticipated for a binomial distribution with parameters n = 64

and p = 0.5, the visual representation displays scattered points

grouped around the mean value. The graph's dashed red line

indicates the expected mean in this instance, which is μ = 32.

The standard deviation of such a distribution is given by the

formula

() ()1 64 0.5 1 0.5 16 4np p = − =  − = =

which implies that most of the data (approximately 95%)

should fall within the interval {24, 40}. The values vary from

about 25 to 43, suggesting no notable systematic deviations,

therefore supporting this expectation. The distribution of

points suggests that the hash function shows good diffusion

and that there is no deterministic relationship between input

changes and the locations of set bits in the output since it

seems random without any clear pattern. A well-designed hash

function's desirable quality is such a level of randomness,

which guarantees that tiny input changes produce radically

different outputs, therefore improving the cryptographic

strength of the function. Statistically speaking, the findings

show consistency and fairness in the distribution of "1" bits,

which is vital for both cryptographic uses and non-

cryptographic use cases like hash tables. Though it does not

offer a full picture without further tests like frequency

analysis, avalanche tests, or collision resistance analysis, this

kind of study is a qualitative indicator of entropy and bit-level

balance in the function. The results of this experiment,

however, point to the hash function satisfying the criterion of

statistical balance in its output bit.

B. Bit balance test

Closely related to the previous test is the bit balance test,

which examines whether each individual bit in the output is

Figure 1. Graphical representation of the RNS hash function algorithm

Figure 2. Distribution of Hamming weights in the outputs (64-bit)

Figure 3. Bit balance test (10000 samples)

Milija Pavlović et al.

32

equally likely to be 0 or 1 across a large number of output

values. A well-balanced hash function ensures that each bit

behaves randomly, independent of the input structure.

The Fig. 3. presents the results of a bit balance test, a

fundamental method for evaluating the entropy uniformity of

hash functions. Specifically, the chart illustrates the

percentage of bits set to logical one (“1”) at each of the 64 bit

positions within hash outputs, based on an analysis of 10,000

independently generated hashes. This analysis is grounded in

the assumption that a well-designed hash function should

produce outputs where each bit is equally likely to be “1” or

“0,” with a probability of 0.5.

Theoretically, this test relies on the hypothesis of uniform

bit distribution, formally modeled as a set of independent

binary random variables Xᵢ ~ Bernoulli(p), where p = 0.5 for

each bit i ∈ {0, ..., 63}. Under this assumption, the expected

number of “1” values at each bit position is μ = n · p = 10,000

· 0.5 = 5,000. The standard deviation is calculated using the

Bernoulli distribution formula:

((1)) (10000 0.5 0.5) 50n p p =   − =   

which corresponds to a relative fluctuation tolerance of about

±1% (i.e., 100/10,000).

The significance of such an analysis lies in its ability to

validate one of the key properties of cryptographic hash

functions — diffusion — which refers to the desirable

condition where output bits behave chaotically as a function of

all input bits. The absence of structural asymmetries ensures

that no exploitable statistical bias is present, which in turn

strengthens resistance against cryptanalytic attacks such as

collision finding or output prediction.

Beyond cryptographic contexts, bit balance is also

important in non-security applications like hash tables and

pseudorandom generators, where it ensures even distribution

of values and minimizes clustering or collision probability.

Overall, the presented results indicate that the hash

function under analysis exhibits strong entropy characteristics

and uniformity, fulfilling a critical criterion for reliable and

unbiased output distribution.

C. Avalanche effect

In order to evaluate the avalanche effect, the performance

of the hash function was analyzed across input messages of

different lengths. Key parameters describing the behavior of

the function under minimal input perturbations were observed,

including the minimum number of changed output bits

(BMIN), the maximum number of changes (BMAX), the

average number of changes (MEAN), the percentage of

changed bits (P%), and indicators of deviation such as

Average Bias (AB) and Average Probability deviation (AP).

TABLE 1. Key parameteres of Avalanche Test

Message

length

(bytes)

BMIN BMAX MEAN P% AB AP

5 5 45 29.031000 45.360937 0.092781 0.625000

6 5 48 29.715833 46.430990 0.071380 0.671875

7 5 45 30.082857 47.004464 0.059911 0.625000

8 6 45 30.333437 47.395996 0.052080 0.609375

The results in Table 1. indicate that, for input messages

ranging from 5 to 8 bytes in length, the minimum number of

changed output bits varies between 5 and 6. Although this

value is slightly lower than the ideal (where a larger number of

changes would be preferred for stronger diffusion), it remains

within acceptable limits for an initial security assessment. The

maximum number of changes (BMAX) consistently falls

within the range of 45 to 48 bits, representing solid coverage

relative to the total 64 output bits. These results suggest

relatively high sensitivity of the hash function to input

modifications.

The average number of changed bits (MEAN) increases

with the input length, from 29.03 for 5-byte messages to 30.33

for 8-byte messages. Similarly, the percentage of changed bits

(P%) rises from 45.36% to 47.40%, approaching the ideal

50% expected for a well-designed avalanche effect. This trend

indicates that the function distributes bit changes across the

output more uniformly as the input length increases.

A more detailed analysis of deviations from ideal behavior,

through the Average Bias (AB), reveals a decreasing trend as

the message length increases, suggesting greater stability and

reduced deviation from the expected bit-change probability.

AB values decrease from 0.0928 for 5 bytes to 0.0521 for 8

bytes. Simultaneously, the Average Probability (AP) remains

within a narrow range of 0.6094 to 0.6719, indicating

moderate variation between minimum and maximum bit

changes, without extreme deviations.

Overall, the tested hash function demonstrates a strong

avalanche behavior, with the bit change percentage close to

the ideal and low bias across the output bits. Although the

BMIN is slightly lower than desired in some cases, the overall

quality of bit diffusion indicates good cryptographic

robustness for the analyzed message lengths.

International Journal of Electrical Engineering and Computing
Vol. 9, No. 1 (2025)

33

Fig. 4. presents the results of an avalanche effect analysis

for a custom-designed hash function. The graph specifically

illustrates the percentage of output bits changed as a function

of the input message length, measured in bytes. The x-axis

represents different input message lengths (5, 6, 7, and 8

bytes), while the y-axis shows the corresponding percentage of

changed bits in the hash output upon flipping a single input

bit.

The solid blue line with circular markers denotes the

empirically observed percentage of changed bits. It can be

observed that across all tested input lengths, the percentage

remains relatively stable, ranging between approximately

45.36% and 47.40%. This indicates a consistent behavior of

the hash function when subjected to small perturbations in the

input.

For reference, a red dashed horizontal line is drawn at the

50% mark, representing the theoretical ideal for a perfect

avalanche effect, where flipping one input bit would, on

average, flip half of the output bits. The proximity of the

empirical results to this ideal line suggests that the tested hash

function exhibits a strong, though not perfect, avalanche

property.

Importantly, the slight deviation below the ideal 50%

indicates a minor bias in the bit transformation process;

however, such deviations are common and acceptable in

practical hash function design, especially given the

randomness of input sampling and finite sample size (500

samples per input length). Additionally, the relatively small

variance across different message lengths further supports the

robustness of the function's design against input size variation.

Overall, the graph demonstrates that the hash function

maintains a high level of diffusion across varying input sizes,

which is a desirable property for ensuring unpredictability and

resistance against differential cryptanalysis.

VI. CONCLUSION

From protecting digital signatures to verifying data in

distributed systems, hash functions are an essential tool in

contemporary cryptography that guarantee authenticity,

integrity, and data security in a variety of applications. This

analysis focuses on the RNS (Residue Number System) hash

algorithm, which is straightforward, quick, and incredibly

effective at producing hash values because it is based on

binary operations, modular arithmetic, and multi-stage

processing. By using RNS, numbers can be distributed

effectively through smaller, mutually prime moduli,

improving parallel computation and enhancing resistance to

some attacks.

This algorithm's combination of binary formatting,

merging, and modular operations is especially noteworthy

because it produces a hash value with a high degree of

entropy. Stronger resistance to reverse engineering attempts

and collision finding is made possible by high entropy, which

decreases the predictability of the output value even with

small changes in the input. The algorithm is very adaptable for

a range of applications, from tiny sensor systems to massive

distributed networks, because it is made to accommodate

varying input data sizes.

The algorithm's ease of use on various hardware and

software platforms is further enhanced by its simplicity of

implementation. Because of its architecture, it is simple to

modify for a variety of processors, including those with

limited resources. In the context of Internet of Things devices,

where efficiency and speed are crucial considerations, this is

especially crucial.

A thorough analysis of the suggested algorithm's defense

against contemporary cryptanalytic attacks, such as collision

and brute-force attacks, as well as a study of the uniformity of

the hash value distribution, are required for a thorough

evaluation. To objectively evaluate the algorithm's benefits

and potential drawbacks, it's also critical to compare its

security and performance features with those of current

standards like SHA-2 and SHA-3.

Its use in distributed consensus systems and blockchain

technologies, where speed, security, and attack resistance are

essential, may be an especially intriguing area of application.

In this regard, further refinement of the algorithm for hardware

implementations (like FPGA and ASIC platforms) may greatly

expand its applicability, allowing for the development of

security solutions that are quicker and use less energy.

The suggested RNS-based hash algorithm, in summary,

shows great promise for use in fields like change detection

systems, digital signatures, user authentication, safe password

storage, and data integrity verification. It is a strong contender

for additional development and use in contemporary

cryptographic solutions due to its simplicity, high entropy, and

modular flexibility. This algorithm may make a significant

future contribution to the fields of cryptography and

information security with additional optimization and

thorough security assessment.

Figure 4. Avalanche Test – Percentage of Changed Bits

Milija Pavlović et al.

34

ACKNOWLEDGMENT

The authors gratefully acknowledge the support from the
Serbian Ministry of Science, Technological Development and
Innovation (Contract No. 451-03-65/2024- 03/200124). This
work has been partially funded by the University of Pristina in
Kosovska Mitrovica, Faculty of Science and Mathematics,
Serbia, under the project: IJ-2302 (Optimization of neural
network).

REFERENCES

[1] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for

Students and Practitioners, 2nd ed., Springer, 2010.

[2] [2] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 3rd
ed., CRC Press, 2020.

[3] S. M. S. Eldin, A. A. Abd El-Latif, S. A. Chelloug, M. Ahmad, A. H.
Eldeeb, T. O. Diab, W. I. Al Sobky, and H. N. Zaky, “Design and
analysis of new version of cryptographic hash function based on
improved chaotic maps with induced DNA sequences,” IEEE Access,
vol. 11, pp. 101694–101709, 2023.

[4] W. Stallings, Network Security Essentials: Applications and Standards,
6th ed. Pearson Education, 2016.

[5] M. Bellare and P. Rogaway, Introduction to Modern Cryptography,
Lecture Notes, University of California, Davis, 2005.

[6] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL: CRC Press, 1997.

[7] A. Sadeghi-Nasab and V. Rafe, "A Comprehensive Review of the
Security Flaws of Hashing Algorithms," Journal of Computer Virology
and Hacking Techniques, vol. 19, no. 1, pp. 1–16, 2022.

[8] M. Hassan, J. Vliegen, S. Picek, and N. Mentens, “A systematic
exploration of evolutionary computation for the design of hardware-
oriented non-cryptographic hash functions,” in Proc. Genetic and
Evolutionary Computation Conf., 2024, pp. 1255–1263.

[9] X. Wang and H. Yu, “How to break MD5 and other hash functions,” in
Advances in Cryptology – EUROCRYPT 2005, R. Cramer, Ed. Berlin,
Heidelberg: Springer, 2005, pp. 19–35.

[10] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better bloom filter,” in Proceedings of the 14th Annual
European Symposium on Algorithms (ESA), Zurich, Switzerland, 2006,
pp. 456–467.

[11] J. Black, P. Rogaway, T. Shrimpton, and M. Stam, “An Analysis of the
Blockcipher-Based Hash Functions from PGV,” Journal of Cryptology,
vol. 23, no. 4, pp. 519–545, Jul. 2010, doi: 10.1007/s00145-010-9071-0.

[12] Y. Yang and X. Zhang, “A novel hash function based on multi-iterative
parallel structure,” Wireless Pers. Commun., vol. 127, pp. 2979–2996,
2022.

[13] D. Schinianakis and T. Stouraitis, “Residue Number Systems in
Cryptography: design, challenges, robustness,” in Springer eBooks,
2015, pp. 115–161. doi: 10.1007/978-3-319-14971-4_4.

[14] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,”
Journal of Cryptology, vol. 14, no. 4, pp. 255–293, Aug. 2001, doi:
10.1007/s00145-001-0009-4.

[15] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, Aug. 1987 [Digests 9th
Annu. Conf. Magnetics Japan, p. 301, 1982].

[16] N. Stamenković, “Isomorphic transformation and its application to the
modulo (2n + 1) channel for RNS based FIR filter design,” University
Thought - Publication in Natural Sciences, vol. 9, no. 2, pp. 63–68, Jan.
2019, doi: 10.5937/univtho9-21821.

[17] P. V. A. Mohan, Residue number systems: Theory and Applications.
Birkhäuser, 2016.

[18] N. S. Szabó and R. I. Tanaka, Residue arithmetic and its applications to
computer technology. 1967.

[19] K. Isupov, “High-Performance computation in residue number system
using Floating-Point arithmetic,” Computation, vol. 9, no. 2, p. 9, Jan.
2021, doi: 10.3390/computation9020009.

[20] D. M. Schinianakis, A. P. Fournaris, H. E. Michail, A. P. Kakarountas,
and T. Stouraitis, “An RNS Implementation of an Fp Elliptic Curve
Point Multiplier,” IEEE Transactions on Circuits and Systems I Regular
Papers, vol. 56, no. 6, pp. 1202–1213, Nov. 2008, doi:
10.1109/tcsi.2008.2008507.

[21] J. -c. Bajard and L. Imbert, “a full RNS implementation of RSA,” IEEE
Transactions on Computers, vol. 53, no. 6, pp. 769–774, Apr. 2004, doi:
10.1109/tc.200

Milija Pavlović received his BSc degree
in 2022 and MSc degree in 2024 from the
Faculty of Natural Sciences and
Mathematics in Kosovska Mitrovica,
Serbia. He is currently a first-year PhD
student and a teaching assistant at the
Department of Informatics, Faculty of
Natural Sciences and Mathematics, in
Kosovska Mitrovica. His research
interests include cryptography and
modular arithmetic.

Tijana Talić graduated in 2008 from the

Faculty of Natural Sciences and

Mathematics in Banja Luka (Bosnia and

Herzegovina), Department of Mathematics

and Informatics. She received her PhD in

2019 from the Faculty of Information

Technology of the Pan-European

University Apeiron, Banja Luka. Since

2019, she has been employed at the same

faculty as a professor in the field of

computer science and information science and bioinformatics.

Boris Damjanović received his BSc degree

in 2008 from the College of Economics and

Informatics in Prijedor, Bosnia and

Herzegovina, and his MSc and PhD

degrees in 2010 and 2016, respectively,

from the Faculty of Organizational

Sciences, University of Belgrade, Serbia.

He is an associate professor at Union

Nikola Tesla University in Belgrade. His

main areas of interest are cryptography,

computer security, and applied informatics.

Negovan Stamenković received his BSc

degree in 2006 from the Faculty of

Technical Sciences in Kosovska Mitrovica,

Serbia, specializing in Electronics and

Telecommunications. He obtained his PhD

degree in 2011 from the Faculty of

Electronic Engineering, University of Niš,

Serbia. He is a full professor at the Faculty

of Natural Sciences and Mathematics in

Kosovska Mitrovica. His main research

interests are in digital signal processing, computer engineering, and

modular arithmetic.

