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Abstract— In this paper, we propose a novel cryptographic hash function based on the Residue Number System (RNS). The design 

leverages the inherent parallelism of RNS to enhance computational efficiency and resilience against certain classes of attacks. Through 

modular processing across independent residues, the function achieves notable improvements in hardware acceleration capabilities, 

making it particularly suitable for resource-constrained environments. To assess the robustness of the proposed function, we conduct a 

series of tests including the distribution of Hamming weights, bit balance evaluation, and avalanche effect analysis. The results 

demonstrate that the hash function produces uniformly distributed outputs, exhibits strong avalanche characteristics, and maintains 

high resistance to input structure correlation. These properties confirm the potential of the proposed RNS-based approach for secure 

and efficient hashing in modern cryptographic applications. 
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I.  INTRODUCTION  

In modern cryptography, hash functions are considered one 

of the most significant components, and their application 

encompasses a wide range, including ensuring security in 

communication, data integrity, and search optimization [1]. 

Although they have a seemingly simple foundation, the 

implementation and design of hash functions can represent an 

extremely complex process, for which a deep understanding of 

mathematical and computational principles is essential [2]. 

Hash functions can be described as methods that transform 

messages of varying lengths into hash values of fixed length 

[3]. The most significant properties of a hash function are: 

 

• A hash function can be used on a block of data of 

varying sizes. 

• The hash function produces an output of fixed length. 

• The function H(x) is easy to compute for any given x, 

which makes it practical for implementation in both 

hardware and software (where x represents the input 

given to the hash function). 

• For any given hash value h, it is computationally 

impractical to determine x such that H(x) = h. This 

characteristic is referred to in the literature as one-

wayness. 

• For any given block x, it is computationally 

impractical to identify y ≠ x such that H(y) = H(x). 

This property is known as weak collision resistance. 

• It is computationally impractical to find any pair x 

and y such that H(x) = H(y). This property is called 

robust resistance to collisions [4]. 

Hash functions are categorized into two types: keyed and 

unkeyed.  Keyed hash functions utilize both a message and a 

confidential key, whereas unkeyed hash functions depend 

exclusively on the input message [5].  Keyed functions render 

it exceedingly challenging for adversaries to produce identical 

hash results without possessing the secret key.  Nevertheless, 

due to the enhancement of computational capabilities and 

cryptanalytic instruments, antiquated hash algorithms have 

grown progressively susceptible to assaults.  Ensuring security 

standards and safeguarding against threats necessitates the 

creation of advanced, more resilient cryptographic algorithms 

[6]. 
 The functionality of widely utilized hash algorithms, 

including notable examples like MD4, MD5, SHA-1, SHA-2, 
and SHA-3, relies on the execution of diverse arithmetic, 
logical, and algebraic operations.  These algorithms have 
demonstrated unreliability over time, revealing specific 
vulnerabilities to collision-based attacks [7].  Moreover, the 
application of linear processes in some hash function 
algorithms may augment their susceptibility to particular 
cryptographic assaults [8]. 

Hash functions are predominantly utilized in cryptography, 
where they are essential for maintaining data confidentiality 
and validity.  Cryptographic hash functions, specifically SHA-2 
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and SHA-3, are engineered to satisfy rigorous standards.  A 
primary criterion is collision resistance, signifying that it is 
virtually infeasible to identify two distinct inputs yielding 
identical hash values [9].  Due to these characteristics, hash 
functions are essential in secure communication protocols, 
digital signatures, and message authentication. 

Furthermore, hash functions are extensively employed in 
the organization and efficient retrieval of big databases.  Hash 
tables facilitate rapid data retrieval and management, hence 
conserving time and computational resources greatly.  This use 
is particularly significant in domains such as search engines, 
data repositories, and time-critical applications [10]. 

The advancement and refinement of hash functions 
encounter difficulties due to the exponential increase of data in 
contemporary society.  The growing demand for data 
processing in distributed systems and cloud contexts 
underscores the significance of scalability and efficiency in 
hash functions.  Furthermore, the rise of novel security 
vulnerabilities necessitates the continual enhancement of 
cryptographic algorithms to address the challenges presented 
by sophisticated assaults [11]. 

Currently, advancements in hash functions transcend their 
use in conventional systems, encompassing emerging 
technologies like blockchain and cryptocurrencies.  Hash 
functions underpin processes such as "proof of work" in 
cryptocurrencies like Bitcoin, ensuring the irreversibility and 
verifiability of transactions within a distributed framework.  In 
machine learning and artificial intelligence, hashing techniques 
are utilized to compress data and enhance algorithmic speed 
[12]. 

Current hash algorithms, including SHA-2 and SHA-3, 
have constraints on computational cost, vulnerability to side-
channel attacks, and efficiency in hardware applications.  The 
suggested methodology utilizing the Residue Number System 
(RNS) promotes efficiency through simultaneous execution of 
modular activities and bolsters resilience against certain attack 
vectors.  Additionally, RNS-based hash algorithms can be 
refined for hardware acceleration, rendering them appropriate 
for resource-limited settings [13]. 

II. HASHING BASED ON TRADITIONAL MATHEMATICAL 

PRINCIPLES 

Hash functions are among the fundamental algorithms in 
cryptography and computer science in general. Their primary 
role is to transform input messages of arbitrary length into 
output values of fixed length. Some of the most popular hash 
functions that have been used throughout history up to the 
present day include: MD4, MD5, RIPEMD, SHA-1, SHA-2, 
and SHA-3. Some of these functions are derived from one 
another, while others are based on entirely different approaches 
[14]. 

When it comes to the operations used to process messages 
in hash functions, the most common ones include: 

• Bitwise operations – such as AND, OR, or XOR, are 
used to manipulate bits in a way that is optimized for 
processor efficiency. 

• Bit rotations and shifts – help distribute information 
evenly throughout the hash. 

• Message padding – adding bits to the end of the 
message so that its length becomes divisible by the 
block size. 

• Mixing and permutations – the order of bits in the 
message is shuffled across different rounds to increase 
resistance against analytical attacks. 

• Arithmetic operations – used to combine message 
components in an efficient and nonlinear manner. 

• Compression functions – specialized mathematical 
functions that reduce the size of data to a fixed length 
[15]. 

III. RESIDUE NUMBER SYSTEM 

The Chinese Remainder Theorem, which states that an 

integer is represented as a set of remainders with respect to a 

set of pairwise coprime moduli, is the foundation of the 

unique, unconventional, but incredibly effective Residue 

Number System (RNS) [16]. Although this method of 

representing numbers has been around since ancient Chinese 

mathematics, it wasn't until the 18th and 19th centuries that it 

was formally expressed mathematically [17] [18]. The need 

for parallel data processing and faster arithmetic operations 

without carry propagation, which are features of RNS, sparked 

a lot of interest in RNS in the second half of the 20th century, 

when it came to its application in computing and digital signal 

processing.   

A significant benefit over the traditional binary system is 

the residue number system's high degree of parallelism, lower 

latency, and faster speed, which are made possible by the 

independent execution of operations like addition, subtraction, 

and multiplication on integers within each modulus. Because 

of these advantages, RNS is being used more and more in 

high-performance processors, embedded systems, digital 

signal processing systems, and image processing processors 

[19].   

In cryptography, this system is especially significant 

because it can speed up modular arithmetic, which is essential 

for algorithms like RSA, ECC, and other public-key 

systems—especially in hardware implementations where side-

channel attack resistance is critical [20]. Furthermore, RNS is 

ideally suited for implementation in hash functions because its 

parallel nature allows for efficient hardware implementation, 

which is crucial in systems where hashing must be quick and 

frequent (e.g., blockchain technologies, cryptographic 

databases, etc.), and modular arithmetic allows for the creation 

of a large number of distinct hash values with minimal 

collision risk.   

The advantages of RNS in particular domains, like secure 

and embedded systems, make it a useful tool in contemporary 

digital arithmetic, despite some of its drawbacks, such as more 

complicated comparison operations, sign determination, and 

conversion between number systems [21]. 
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IV.  RESIDUE NUMBER SYSTEM HASH FUNCTION 

Let a message M of length N  be given. First, the message 

is padded with zeros to ensure that its length n  is divisible by 

64 . Formaly, if / 64N    is the smallest integer greater than 

or equal to, then: 

 

64 / 64n N=      

 

The padded message *
M  has length n , and its content is: 

* || 0 −=
n N

M M  

where 0 −n N
 is a string of zeros of length n N− , аnd ||  

denotes concantenation. 

Then, the message *
M  is divided into t  blocks 

iB  each of 

length 64 bits: 

*

1 2|| || || ,=
t

M B B B…         
64

n
t =  

A. Block processing using moduli 

For each block  
iB , a set of moduli  1 2 8, ,...,x x x  is used, 

where: 

1 2 3 4 5 6211, 223, 227, 229, 233, 239,x x x x x x= = = = = =  

     
7 8241, 251x x= = , 

and all moduli are pairwise coprime 

After selecting of moduli, the remainder and quotient are 

computed for each modulus: 

,i ja =
iB  mod 

ix , ,i j

i

A
x

 
=  
 

i
B

, j   1,2,...,8   

B. Iterative processing 

After computing  , ,,i j i ja A , further iterative processing is 

performed through the following steps: 

1. Computation of new values for remainders and 

quotients:  

• For remainders: 

( ), , ,i j i j i jb A a= +  mod 
jx ,  j    1,2,...,8 . 

• For quotients:  

( ), ,

,

i j i j

i j

j

A a

x

 +
 =
  

B  ,    j    1,2,...,8 . 

2. Continuation of processing with previous results: 

From the expressions above, further processing 

yields: 

( ), , ,i j i j i jc b= +B   mod 
jx , 

( ), ,

,

i j i j

i j

j

b
C

x

 +
 =
  

B
. 

The process is repeated for 

 , ,,i j i jd D ,  , ,,i j i je E ,  , ,,i j i jf F ,  , ,,i j i jg G ,  , ,,i j i jh H . 

C. Formal expression for the general step 

For each step k  (where  1k  ),  the following is 

computed : 

( ) ( ) ( )( )1 1

, , ,

k k k

i j i j i jx X x
− −

= +    mod  
jx , 

( )

( ) ( )( )1 1

, ,

,

k k

i j i jk

i j

j

X x
X

x

− − +
 =
 
 

, 

where ( )0
, ,i j i jx a=  and  ( )0

, ,i j i jX A= . 

This process continues until the final step, where we obtain the 

set of results  , ,,i j i jh H  for each block 
iB . 

D. Algorithm I part 

INPUT: Message M, length N 

SET: x = [211, 223, 227, 229, 233, 239, 241, 251] // Moduli 

SET: n = CEIL (N / 64) * 64 // Adjust message length to be 
divisible by 64 

APPEND zeros to the end of message M until its length 
becomes n 

DIVIDE message M into t blocks B[1], B[2], ..., B[t] of 64 
bits each 

 

// Initialization of values for computation 

FOR each block B[i], where i is from 1 to t: 

  FOR each modulus x[j], where j is from 1 to 8: 

    // Step 1: Compute initial values 

    a[i][j] = B[i] MOD x[j] 

    A[i][j] = FLOOR(B[i] / x[j]) 

 

    // Iterative computation 

    b[i][j] = (A[i][j] + a[i][j]) MOD x[j] 

    B1[i][j] = FLOOR((A[i][j] + a[i][j]) / x[j]) 

 

    c[i][j] = (B1[i][j] + b[i][j]) MOD x[j] 

    C[i][j] = FLOOR((B1[i][j] + b[i][j]) / x[j]) 
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    d[i][j] = (C[i][j] + c[i][j]) MOD x[j] 

    D[i][j] = FLOOR((C[i][j] + c[i][j]) / x[j]) 

 

    e[i][j] = (D[i][j] + d[i][j]) MOD x[j] 

    E[i][j] = FLOOR((D[i][j] + d[i][j]) / x[j]) 

 

    f[i][j] = (E[i][j] + e[i][j]) MOD x[j] 

    F[i][j] = FLOOR((E[i][j] + e[i][j]) / x[j]) 

 

    g[i][j] = (F[i][j] + f[i][j]) MOD x[j] 

    G[i][j] = FLOOR((F[i][j] + f[i][j]) / x[j]) 

 

    h[i][j] = (G[i][j] + g[i][j]) MOD x[j] 

    H[i][j] = FLOOR((G[i][j] + g[i][j]) / x[j]) 

 

OUTPUT: h[i][j] and H[i][j] for all i in {1, ..., t} and j in {1, ..., 
8} 

 

E. Computing final residues using XOR operation 

For each modulus 
jx ( )1,...,8j =  and the corresponding 

values , , , , , , , ,j j j j j j j j ja b c d e f g h H , the final residue 
jostaci  

is defined as: 

j j j j j j j j j jostaci a b c d e f g h H=          

Here,   denotes the bitwise XOR  logical operation. 

F. Converting the result to an 8-bit binary representation 

Each residue 
jostaci  is converted into a binary 

representation with exactly 8 bits, by adding leading zeros if 

necessary. This representation is denoted as _ jb ostaci : 

( )_ j jb ostaci bin ostaci= , 

with leading zeros added to reach a total length of 8 bits. 

G. Concatenation of binary representations 

The final hash hesF  is obtained by concatenating the binary 

representations:  

1 2 3 4_ || _ || _ || _ ||hesF b ostaci b ostaci b ostaci b ostaci=  

5 6 7 8|| _ || _ || _ || _b ostaci b ostaci b ostaci b ostaci . 

 

Here,  ||  denotes the operation of concatenating binary strings. 

H. Result 

The final hash hesF   is a binary string of legth 64 bits, 

representing the concatenation of all individual binary 

residues. 

I. Algortihm II part 

// 1. Computing final remainders using XOR operation 

FOR j ← 1 TO 8 DO 

    remainders[j] ← a[j] XOR b[j] XOR c[j] XOR d[j] XOR 

e[j] XOR f[j] XOR g[j] XOR h[j] XOR H[j] 

 

// 2. Converting results to 8-bit binary representation 

FOR j ← 1 TO 8 DO 

    b_remainders[j] ← ConvertTo8BitBinary(remainders[j]) 

 

// 3. Concatenating binary representations 

binary_combined ← "" 

FOR j ← 1 TO 8 DO 

    binary_combined ← binary_combined + b_remainders[j] 

 

// 4. Assigning the final hash 

finalHash ← binary_combined 

 

// Function to convert a number to an 8-bit binary 
representation 

FUNCTION ConvertTo8BitBinary(number): 

    binary_rep ← ToBinary(number) 

    IF Length(binary_rep) < 8 THEN 

        binary_rep ←  AddLeadingZeros (binary_rep, 8 - 

Length(binary_rep)) 

    RETURN binary_rep 
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A graphical representation of the complete algorithm is 

given in Fig. 1. 

V. MEASURING EFFICIENCY 

A key component of assessing cryptographic hash functions 

is their efficiency and output transformation quality 

measurement. Maintaining security characteristics like 

confusion and diffusion depends on several tests and measures 

used to guarantee that tiny input changes result in 

unpredictable and extensive output changes. 

A. Distribution of Hamming weights in the outputs 

The distribution of Hamming weights in the output hashes 

serves as one of the indicators of the hash function's quality. 

Ideally, the output should contain approximately equal 

numbers of ones and zeros, which indicates that the hash 

function is unbiased and evenly distributes the output bits. 

Using a sample of 1000 independent hashings of random 

inputs, Fig. 2. examines the distribution of Hamming weights 

in the outputs of a 64-bit hash function. The horizontal axis 

indicates the test index, and the vertical axis shows the number 

of bits in each generated hash that are set to logical one ("1"). 

With a distribution that oscillates within the bounds 

anticipated for a binomial distribution with parameters n = 64 

and p = 0.5, the visual representation displays scattered points 

grouped around the mean value. The graph's dashed red line 

indicates the expected mean in this instance, which is μ = 32. 

The standard deviation of such a distribution is given by the 

formula 

( ) ( )1 64 0.5 1 0.5 16 4np p = − =  − = =  

which implies that most of the data (approximately 95%) 

should fall within the interval {24, 40}. The values vary from 

about 25 to 43, suggesting no notable systematic deviations, 

therefore supporting this expectation. The distribution of 

points suggests that the hash function shows good diffusion 

and that there is no deterministic relationship between input 

changes and the locations of set bits in the output since it 

seems random without any clear pattern. A well-designed hash 

function's desirable quality is such a level of randomness, 

which guarantees that tiny input changes produce radically 

different outputs, therefore improving the cryptographic 

strength of the function. Statistically speaking, the findings 

show consistency and fairness in the distribution of "1" bits, 

which is vital for both cryptographic uses and non-

cryptographic use cases like hash tables. Though it does not 

offer a full picture without further tests like frequency 

analysis, avalanche tests, or collision resistance analysis, this 

kind of study is a qualitative indicator of entropy and bit-level 

balance in the function. The results of this experiment, 

however, point to the hash function satisfying the criterion of 

statistical balance in its output bit. 

B. Bit balance test 

Closely related to the previous test is the bit balance test, 

which examines whether each individual bit in the output is 

 

Figure 1.  Graphical representation of the RNS hash function algorithm 

 

Figure 2.  Distribution of Hamming weights in the outputs (64-bit) 

 

Figure 3.  Bit balance test (10000 samples) 
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equally likely to be 0 or 1 across a large number of output 

values. A well-balanced hash function ensures that each bit 

behaves randomly, independent of the input structure. 

The Fig. 3. presents the results of a bit balance test, a 

fundamental method for evaluating the entropy uniformity of 

hash functions. Specifically, the chart illustrates the 

percentage of bits set to logical one (“1”) at each of the 64 bit 

positions within hash outputs, based on an analysis of 10,000 

independently generated hashes. This analysis is grounded in 

the assumption that a well-designed hash function should 

produce outputs where each bit is equally likely to be “1” or 

“0,” with a probability of 0.5. 

Theoretically, this test relies on the hypothesis of uniform 

bit distribution, formally modeled as a set of independent 

binary random variables Xᵢ ~ Bernoulli(p), where p = 0.5 for 

each bit i ∈ {0, ..., 63}. Under this assumption, the expected 

number of “1” values at each bit position is μ = n · p = 10,000 

· 0.5 = 5,000. The standard deviation is calculated using the 

Bernoulli distribution formula: 

( (1 )) (10000 0.5 0.5) 50n p p =   − =     

which corresponds to a relative fluctuation tolerance of about 

±1% (i.e., 100/10,000). 

The significance of such an analysis lies in its ability to 

validate one of the key properties of cryptographic hash 

functions — diffusion — which refers to the desirable 

condition where output bits behave chaotically as a function of 

all input bits. The absence of structural asymmetries ensures 

that no exploitable statistical bias is present, which in turn 

strengthens resistance against cryptanalytic attacks such as 

collision finding or output prediction. 

Beyond cryptographic contexts, bit balance is also 

important in non-security applications like hash tables and 

pseudorandom generators, where it ensures even distribution 

of values and minimizes clustering or collision probability. 

Overall, the presented results indicate that the hash 

function under analysis exhibits strong entropy characteristics 

and uniformity, fulfilling a critical criterion for reliable and 

unbiased output distribution. 

C. Avalanche effect 

In order to evaluate the avalanche effect, the performance 

of the hash function was analyzed across input messages of 

different lengths. Key parameters describing the behavior of 

the function under minimal input perturbations were observed, 

including the minimum number of changed output bits 

(BMIN), the maximum number of changes (BMAX), the 

average number of changes (MEAN), the percentage of 

changed bits (P%), and indicators of deviation such as 

Average Bias (AB) and Average Probability deviation (AP). 

TABLE 1. Key parameteres of Avalanche Test 

Message 

length 

(bytes) 

BMIN BMAX MEAN P% AB AP 

5 5 45 29.031000 45.360937 0.092781 0.625000 

6 5 48 29.715833 46.430990 0.071380 0.671875 

7 5 45 30.082857 47.004464 0.059911 0.625000 

8 6 45 30.333437 47.395996 0.052080 0.609375 

The results in Table 1. indicate that, for input messages 

ranging from 5 to 8 bytes in length, the minimum number of 

changed output bits varies between 5 and 6. Although this 

value is slightly lower than the ideal (where a larger number of 

changes would be preferred for stronger diffusion), it remains 

within acceptable limits for an initial security assessment. The 

maximum number of changes (BMAX) consistently falls 

within the range of 45 to 48 bits, representing solid coverage 

relative to the total 64 output bits. These results suggest 

relatively high sensitivity of the hash function to input 

modifications. 

The average number of changed bits (MEAN) increases 

with the input length, from 29.03 for 5-byte messages to 30.33 

for 8-byte messages. Similarly, the percentage of changed bits 

(P%) rises from 45.36% to 47.40%, approaching the ideal 

50% expected for a well-designed avalanche effect. This trend 

indicates that the function distributes bit changes across the 

output more uniformly as the input length increases. 

A more detailed analysis of deviations from ideal behavior, 

through the Average Bias (AB), reveals a decreasing trend as 

the message length increases, suggesting greater stability and 

reduced deviation from the expected bit-change probability. 

AB values decrease from 0.0928 for 5 bytes to 0.0521 for 8 

bytes. Simultaneously, the Average Probability (AP) remains 

within a narrow range of 0.6094 to 0.6719, indicating 

moderate variation between minimum and maximum bit 

changes, without extreme deviations. 

Overall, the tested hash function demonstrates a strong 

avalanche behavior, with the bit change percentage close to 

the ideal and low bias across the output bits. Although the 

BMIN is slightly lower than desired in some cases, the overall 

quality of bit diffusion indicates good cryptographic 

robustness for the analyzed message lengths. 
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Fig. 4. presents the results of an avalanche effect analysis 

for a custom-designed hash function. The graph specifically 

illustrates the percentage of output bits changed as a function 

of the input message length, measured in bytes. The x-axis 

represents different input message lengths (5, 6, 7, and 8 

bytes), while the y-axis shows the corresponding percentage of 

changed bits in the hash output upon flipping a single input 

bit. 

The solid blue line with circular markers denotes the 

empirically observed percentage of changed bits. It can be 

observed that across all tested input lengths, the percentage 

remains relatively stable, ranging between approximately 

45.36% and 47.40%. This indicates a consistent behavior of 

the hash function when subjected to small perturbations in the 

input. 

For reference, a red dashed horizontal line is drawn at the 

50% mark, representing the theoretical ideal for a perfect 

avalanche effect, where flipping one input bit would, on 

average, flip half of the output bits. The proximity of the 

empirical results to this ideal line suggests that the tested hash 

function exhibits a strong, though not perfect, avalanche 

property. 

Importantly, the slight deviation below the ideal 50% 

indicates a minor bias in the bit transformation process; 

however, such deviations are common and acceptable in 

practical hash function design, especially given the 

randomness of input sampling and finite sample size (500 

samples per input length). Additionally, the relatively small 

variance across different message lengths further supports the 

robustness of the function's design against input size variation. 

Overall, the graph demonstrates that the hash function 

maintains a high level of diffusion across varying input sizes, 

which is a desirable property for ensuring unpredictability and 

resistance against differential cryptanalysis. 

VI. CONCLUSION 

From protecting digital signatures to verifying data in 

distributed systems, hash functions are an essential tool in 

contemporary cryptography that guarantee authenticity, 

integrity, and data security in a variety of applications. This 

analysis focuses on the RNS (Residue Number System) hash 

algorithm, which is straightforward, quick, and incredibly 

effective at producing hash values because it is based on 

binary operations, modular arithmetic, and multi-stage 

processing. By using RNS, numbers can be distributed 

effectively through smaller, mutually prime moduli, 

improving parallel computation and enhancing resistance to 

some attacks. 

This algorithm's combination of binary formatting, 

merging, and modular operations is especially noteworthy 

because it produces a hash value with a high degree of 

entropy. Stronger resistance to reverse engineering attempts 

and collision finding is made possible by high entropy, which 

decreases the predictability of the output value even with 

small changes in the input. The algorithm is very adaptable for 

a range of applications, from tiny sensor systems to massive 

distributed networks, because it is made to accommodate 

varying input data sizes. 

The algorithm's ease of use on various hardware and 

software platforms is further enhanced by its simplicity of 

implementation. Because of its architecture, it is simple to 

modify for a variety of processors, including those with 

limited resources. In the context of Internet of Things devices, 

where efficiency and speed are crucial considerations, this is 

especially crucial. 

A thorough analysis of the suggested algorithm's defense 

against contemporary cryptanalytic attacks, such as collision 

and brute-force attacks, as well as a study of the uniformity of 

the hash value distribution, are required for a thorough 

evaluation. To objectively evaluate the algorithm's benefits 

and potential drawbacks, it's also critical to compare its 

security and performance features with those of current 

standards like SHA-2 and SHA-3. 

Its use in distributed consensus systems and blockchain 

technologies, where speed, security, and attack resistance are 

essential, may be an especially intriguing area of application. 

In this regard, further refinement of the algorithm for hardware 

implementations (like FPGA and ASIC platforms) may greatly 

expand its applicability, allowing for the development of 

security solutions that are quicker and use less energy. 

The suggested RNS-based hash algorithm, in summary, 

shows great promise for use in fields like change detection 

systems, digital signatures, user authentication, safe password 

storage, and data integrity verification. It is a strong contender 

for additional development and use in contemporary 

cryptographic solutions due to its simplicity, high entropy, and 

modular flexibility. This algorithm may make a significant 

future contribution to the fields of cryptography and 

information security with additional optimization and 

thorough security assessment. 

 

 

Figure 4.  Avalanche Test – Percentage of Changed Bits 
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