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Abstract— This work is intended to compare three methods for disturbances estimation and compensation in discrete-time variable 

structure systems with sliding modes. All methods detect disturbance, which appear in control channel, with time delay of one sampling 

period. The first method is based on nominal discrete-time plant model and can be used in any type of discrete-time control systems. 

The second and the third methods detect disturbance by measurement of sliding function, and it is applicable in discrete-time sliding 

mode control systems only. The main task of this work is to check efficiency of the given methods in the presence of unmodeled inertial 

dynamics in actuators and position and velocity sensors of a positional servo system. It is shown that all three methods give near 

identical results in the nominal case, while the second and the third methods are superior in the presence of unmodelled dynamics. The 

third method introduces zig-zag motion in the nominal case. Results of research are illustrated by computer simulation of an example 

of positional servo system.  
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I.  INTRODUCTION 

Continuous-time variable structures systems with sliding 
mode (SM) are completely invariant (insensitive) to 
disturbances that enter through the control channel, provided 
they meet the matching conditions [1]. The design process for 
these systems begins with the selection of an appropriate 
function s(x)=0 in the state space. Generally, this geometrically 
represents a sliding hypersurface, or a hyperplane in special 
cases. In second-order systems, this is a sliding line, and in first-
order systems, it is an origin point. The objective is to bring the 
system state from any initial condition to the sliding manifold 
s(x)=0 in finite time and maintain on it, regardless of 
disturbances. This hypersurface s(x)=0 contains the system 
equilibrium state x=0. The equation s(x)=0 defines sliding 
mode dynamics. The control task is to bring the system state 
into the origin, while always remaining on s(x)=0. This type of 
motion is called sliding, and s(x) is the sliding function.  

For linear systems, it is easy to find a control that will guide 
the nominal system (system with nominal parameters and 
without disturbances) along s(x)=0 with the initial condition on 
s(x(0))=0. This control is called equivalent control. However, 
in linear continuous-time systems, it is not possible to bring the 
system state to s(x)=0 from any initial state 𝐬(𝒙(0)) ≠0 in finite 
time. Therefore, additional nonlinear (discontinuous) control 
must be introduced – the reaching control. Thus, in continuous-
time SM systems, the control contains two components: 

equivalent control and reaching control. Reaching control is of 
the form: 

  𝒖𝑟 = 𝜶sign(𝒔(𝒙)), (1) 

where 𝜶 = dij(𝛼𝒊)  is a diagonal 𝑚 × 𝑚  matrix, 
𝛼𝒊 =constant>0, and its magnitude depends on the absolute 
value of the disturbance acting on the system. The function 

 sign(𝒔(𝒙)) = {
−1  for 𝒔 < 0
   0  for 𝒔 = 0
   1  for 𝒔 > 0

 (2) 

is a switching function that changes its sign on s(x)=0. The 
complete control is of the form: 

 𝒖(𝑡) = 𝒖𝑒𝑞(𝑡) + 𝒖𝑟(𝑡), (3) 

where 𝒖𝑒𝑞(𝑡)  is the equivalent control and 𝒖𝑟(𝑡)  is the 

reaching control. 

The discontinuous control term drives the system to fulfill 
condition s(x)=0, if there is no time delay in information 
processing, which is achievable in continuous-time systems. 
However, if the system has delays in information processing 
(pure or inertial delay, or hysteresis), the system trajectory 
cannot achieve exactly s(x)=0 but will oscillate around s(x)=0. 
Thus, according to (2), s(x) is also called a switching function, 
as the control continuously switches between positive and 
negative values. This leads to parasitic oscillations known as 
chattering. The amplitude of chattering creates a quasi-sliding 
domain around s(x)=0. The narrower this zone, the higher the 
system quality. Chattering is the primary drawback and a 
problem for the broader application of systems with sliding This paper is a revised and expanded version of the paper presented at 
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mode control (SMC), besides the requirement for knowledge of 
all the state variables of the control plant. 

Modern control systems are designed using elements with 
discrete-time (DT) information processing. Since the advent of 
the first microcontrollers, significant progress has been made in 
terms of the speed and accuracy of data processing. However, 
regardless of the processor speed, there will always be a time 
delay of one sampling period. Moreover, most control plants are 
continuous, with disturbances that cannot be measured and 
discretized. This means that the digital implementation of 
analog SMC algorithms would lead to the occurrence of 
chattering [2], and invariance cannot be achieved in DT SMC 
systems. Fortunately, significant robustness is achieved, but it 
is often insufficient. Therefore, disturbance compensation is 
frequently utilized. 

DT SMC for linear control plants is characterized by the fact 
that DT equivalent control provides both the reaching and the 
sliding components [3-8]. The DT equivalent control is 
sufficient to bring the system to the surface s(x)=0 and 
maintains it on that surface at each sampling instant, under 
nominal conditions (without external or internal disturbances). 
In reference [8], the reaching and equivalent controls are 
separated using δ-discrete model of the system instead of the 
conventionally used shift model. 

A nonlinear component of the form (1) must be added to this 
unique control to compensate for disturbances. This component 
will also lead to chattering. To minimize chattering, it is 
necessary to estimate disturbance and compensate it to the 
greatest extent possible, so that the parameter α in (1) should be 
grater only than the uncompensated part of the disturbance. This 
reduces the width of the quasi-sliding domain and improves the 
system quality. 

In current theory and practice, Luenberger-type disturbance 
observers are commonly used. This paper focuses on three 
simple methods for disturbance estimation and compensation in 
DT systems. The first method in SMC was initially applied in 
[5] and subsequently in other works, e.g.  [9]. It estimates the 
disturbance with a one-step delay. Therefore, in this paper, we 
will refer to it as One Step Delay (OSD) or the First estimation 
method. 

The Second and Third estimation methods are based on 
detecting disturbances by measuring the sliding function s(x). 
The disturbance is observed with a one-step delay, as with the 
OSD method, but it cannot be directly used for compensation 
and requires further processing, which involves integrating the 
sliding function s(x). Therefore, we will refer to it as the 
integration (INT) method. This method was firstly applied and 
compared with OSD in [10], experimentally tested on a 
positioning servo system in [11], theoretically explained in 
[12], and further verified for speed or position control of DC 
motors or asynchronous motors in [13] and [14]. Similar 
research is presented in [15], [16]. A variant of this method, 
applied to systems designed using Gao's reaching law [17], [18] 
is provided in [19].  

The objective of this paper is to compare the three methods 
when applied to the positional servo system from [9] under 
various conditions: a nominal system with external disturbances 
without unmodeled dynamics, and the case when unmodeled 
dynamics are present. Unmodeled dynamics can be in the power 
amplifier (actuator), position and speed sensors. Based on this 

analysis, the paper will provide comprehensive conclusions and 
recommendations. 

The paper is organized as follows. After the introduction, 
the second section provides the theoretical foundations, 
summarized from the cited literature [5]-[9]. The third section 
presents an example of a servo system, and the comparative 
simulation results of the mentioned compensation methods are 
given. The paper concludes with a summary and a list of 
references. 

II. DESCRIPTION OF THE SYSTEM AND FUNDAMENTALS OF 

THE SLIDING MODE CONTROL THEORY 

Consider a linear time-invariant control plant, described by 
a dynamical model in the CT domain with 

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) + 𝑫𝒇(𝑡), (4) 

where 𝒙(𝑡) ∈ ℝ𝑛  is the measurable state vector, 𝒖(𝑡) ∈ ℝ𝑚  
and 𝒇(𝑡) ∈ ℝ𝑙  are the control and disturbance inputs, 
respectively. Matrices A, B and D are constant and have 
appropriate dimensions. It is assumed that the disturbance acts 
through the control channel, so the following matching 
conditions [1] holds:   

 rank([𝑩𝑫]) = rank(𝑩). (5) 

It is also assumed that  |𝒇(𝑡)| ≤ 𝒇0 < ∞; |�̇�(𝑡)| ≤ 𝒇1 < ∞. 

The DT realization of (4) with a sampling period (T) leads 
to the model (x(kT)≡ 𝒙𝑘, 𝑘 ∈ 𝑁0) 

 𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑𝒖𝑘 + 𝒗𝑘 , (6) 

where 𝑨𝑑 = 𝑒𝑨𝑇;  𝑩𝑑 = ∫ 𝑒𝑨𝜏𝑑𝜏
𝑇

0
𝑩, 

𝒗𝑘 = ∫ 𝑒𝑨𝜏𝑫𝒇(𝑘 + 1)𝑇 − 𝜏)𝑑𝜏
𝑇

0
. 

A. Discrete-time Sliding Mode  

If the system satisfies conditions (5) and the disturbance is 
slowly varying and constant during the sampling period, then 
the following holds: 

 𝒗𝑘 = 𝑩𝑑𝒅𝑘 . (7) 

Then (6) becomes 

 𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑(𝒖𝑘 + 𝒅𝑘). (8) 

The task is to achieve DT SM along the surface 

 𝒔𝑘 = 𝑪𝑑𝒙𝑘 = 0, 𝑪𝑑 ∈ ℝ𝑚×𝑛 (9) 

regardless of the initial system state, which may or may not 
satisfy relation (9). The condition for the DT SM to occur [3]-
[5] is 

 𝒔𝑘+1 = 𝑪𝑑𝒙𝑘+1 = 𝟎 for ∀𝒙𝑘 . (10) 

This means that the system is required to reach the specified 
sliding surface (9) in one sampling period.  

Substituting (8) into (10) yields 

 𝑪𝑑𝒙𝑘+1 = 𝑪𝑑𝑨𝑑𝒙𝑘 + 𝑪𝑑𝑩𝑑(𝒖𝑘 + 𝒅𝑘) = 0. (11) 

Now, the control that satisfies (10) is determined as 

 𝒖𝑘 = −(𝑪𝑑𝑩𝑑)−1𝑪𝑑𝑨𝑑𝒙𝑘 − 𝒅𝑘 , 𝑪𝑑𝑩𝑑  ≠ 𝟎. (12) 

The control (12), in general, is not feasible since disturbance 
𝒅𝑘  cannot be measured. Therefore, an equivalent control is 
defined for the nominal system (𝒅𝑘=0) 
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 𝒖𝑒𝑞,𝑘 = −(𝑪𝑑𝑩𝑑)−1𝑪𝑑𝑨𝑑𝒙𝑘. (13) 

To achieve the required DT SM, the disturbance should be 
estimated and compensated. This approach to organizing DT 
SM is referred to in the literature as Equivalent Control-Based 
SM (ECBSM) [9]. 

The second approach to synthesizing DT SM is based on 
Gao's reaching-law method, developed for CT systems in [17], 
and then adapted for DT SMC in [18]. The method relies on the 
prior definition of the sliding function dynamics, given by the 
expression [18] 

𝒔𝑘+1 = (𝑰 − 𝒒𝑇)𝒔𝑘 − 𝜺𝑇𝑠𝑖𝑔𝑛(𝒔𝑘) + 𝑪𝑑𝒅𝑘 , 
𝜺, 𝒒 > 0, 0 < (𝑰 − 𝒒𝑇) < 𝑰. 

(14) 

By substituting 𝒔𝑘+1 in (14) with 𝑪𝑑𝒙𝑘+1 for 𝒙𝑘+1, defined in 
(8), solving this equation for the control input yields 

𝒖𝑘 = −(𝑪𝑑𝑩𝑑)−1{𝑪𝑑𝑨𝑑𝒙𝑘 + (𝑰 − 𝒒𝑇)𝒔𝑘

− 𝜺𝑇𝑠𝑖𝑔𝑛(𝒔𝑘)} 
(15) 

The control input (15) is derived under the assumption that 
the disturbance 𝒅𝑘  in (14) is known. If it is not known, the 
disturbance should be estimated. Then, instead of 𝒅𝑘 , the 

estimated value �̂�𝑘 will appear in (14). 

B. Disturbance Estimation Methods 

1) The First Estimation Method 
It is based on the DT model of the nominal control plan (6) 

and was first applied for DTSMC in [5]. The system (6) can be 
rewritten as 

 𝒙𝑘 = 𝑨𝑑𝒙𝑘−1 + 𝑩𝑑𝒖𝑘−1 + 𝒗𝑘−1, (16) 

from which it follows 

 𝒗𝑘−1 = 𝒙𝑘 − 𝑨𝑑𝒙𝑘−1 − 𝑩𝑑𝒖𝑘−1. (17) 

Notice that 𝒗𝑘, in the general case, does not satisfy (5). 

However, if the sampling period T is sufficiently small, the 
component of the disturbance that does not satisfy (5) is 
negligible compared to the one that does [8]. This will be 
assumed hereafter. In that case, 𝒗𝑘 = 𝑩𝑑𝒅𝑘 , and (3) can be 
written in the form (8). 

By introducing in (6) the compensating control 𝒖𝑐,𝑘 =
−𝒗𝑘−1 = −𝑩𝑑𝒅𝑘−1 with the opposite sign to 𝒅𝑘, it is obtained 

 𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑(𝒖𝑘 + 𝒅𝑘 − 𝒅𝑘−1). (18) 

If the disturbance is continuous and bounded,  𝒅𝑘 − 𝒅𝑘−1, 
as the uncompensated equivalent disturbance, is of the order 
𝑂(𝑇2) [5].  

Therefore, instead of 𝒅𝑘, there will now be a disturbance 

 𝒅𝑛 = 𝒅𝑘 − 𝒅𝑘−1, (19) 

so, the magnitude 𝜶 in (1) should take a significantly smaller 
value (𝜶 ≥ |𝒅𝑛|), which drastically reduces the amplitude of 
the switching control of the form (1), and consequently, the 
level of chattering. 

2) The Second Estimation Method 
This method is based on the fact that the disturbance, which 

satisfies (5), is directly reflected in the sliding function (9) with 
one sampling period delay. The sliding function value can 
always be calculated using the measured state variables, since it 
is a linear combination of the system state coordinates. However, 

unlike the previous method, the determined value cannot be 
directly added to the control for disturbance compensation. 
Instead, the disturbance signal must be reconstructed using this 
value. This leads to processing of the sliding function using 
integrators. This compensation is reminiscent of classical 
proportional-integral (PI) control, where the sliding function 
signal is used instead of the error signal. 

Multiply both sides of equation (8) by 𝑪𝑑. Now, substitution 
of the equivalent control (13) into the resulting equation will 
give 

𝑪𝑑𝒙𝑘+1 = 𝑪𝑑𝑨𝑑𝒙𝑘 + 𝑪𝑑𝑩𝑑(−(𝑪𝑑𝑩𝑑)−1𝑪𝑑𝑨𝑑𝒙𝑘 + 𝒅𝑘)  (20) 

or equivalently: 

𝒔𝑘+1 = 𝑪𝑑𝑩𝑑𝒅𝑘 ↔ 𝒅𝑘−1 = (𝑪𝑑𝑩𝑑)−1𝒔𝑘. (21) 

In this way, a disturbance estimate is obtained, which is 
simpler than (17). However, the estimated value 𝒅𝑘−1 =
(𝑪𝑑𝑩𝑑)−1𝒔𝑘  from (21) cannot be directly applied as in the 
previous case. An explanation follows. 

Multiplying both sides of (18) by 𝑪𝑑 and substituting 𝒅𝑘−1 
from (21), gives 

 𝒔𝑘+1 = −𝒔𝑘 + 𝑪𝑑𝑩𝑑𝒅𝑘=−𝒔𝑘 + �̃�𝒌 (22) 

which leads to oscillations. For example, in the case of a 
constant disturbance, this can be easily verified. Let the system, 
until time t=𝑡𝑘, be without disturbance and 𝒔𝑘 = 0. At t=𝑡𝑘+1, 

𝒔𝑘+1 = �̃�𝒌 and in the next sampling period t=𝑡𝑘+2, it will be 
𝒔𝑘+2 = 0, and so on. Therefore, the system oscillates. 

Another way to compensate the disturbance using the 
estimated value 𝒅𝑘−1 from (21) should be found. 

Let compensating control 𝒖𝑐,𝑘 be introduced into the system. 

Then, it is obtained 

𝒔𝑘+1 = 𝑪𝑑𝑩𝑑𝒖𝑐,𝑘 + 𝒅𝑘 ↔ 𝒔𝑘 = 𝑪𝑑𝑩𝑑𝒖𝑐,𝑘−1 + 𝒅𝑘−1 

𝒅𝑘−1 = 𝒔𝑘 − 𝑪𝑑𝑩𝑑𝒖𝑐,𝑘−1. 
(23) 

Adopting that 𝑪𝑑𝑩𝑑𝒖𝑐,𝑘 = −𝒅𝑘−1, the recursive relation is 

obtained 

 𝑪𝑑𝑩𝑑𝒖𝑐,𝑘 = 𝑪𝑑𝑩𝑑𝒖𝑐,𝑘−1 − 𝒔𝑘. (24) 

Equation (24) in the complex domain becomes [12] 

 𝒖𝑐(𝑧) = −(𝑪𝑑𝑩𝑑)−1 𝑧

𝑧−1
𝒔(𝑧). (25) 

Remark 1: To suppress the chattering in practice due to 

unmodeled dynamics, the following control is used instead of 

(25) 

 𝒖𝑐(𝑧) = −𝒌𝑖𝑛𝑡
𝑧

𝑧−1
𝒅𝑛(𝑧), 0 < 𝒌𝑖𝑛𝑡 ≤ (𝑪𝑑𝑩𝑑)−1. (26) 

This has a significant advantage over the first estimation 
method, as will be illustrated in section III on a system with 
unmodeled dynamics. 

3) The Third Estimation Method 
This method is also based on using the sliding function. It 

was proposed in the paper [19], where the synthesis of sliding 
control is based on Gao’s Reaching Law (RL) method [18]. The 
control that achieves zig-zag motion around the selected sliding 
surface and compensates for disturbance is defined by the 
expression 
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𝒖𝑘 = −(𝑪𝑑𝑩𝑑)−1{𝑪𝑑𝑨𝑑𝒙𝑘 − (1 − 𝑞𝑇)𝒔𝑘 + 𝜀𝑇𝑠𝑖𝑔𝑛(𝒔𝑘)

+ 𝒖𝑐,𝑘}, 
(27a) 

where 𝒖𝑐,𝑘 is the compensating control: 

𝒖𝑐,𝑘 = ∑ [𝒔𝑖 − (1 − 𝒒𝑇)𝒔𝑖−1 + 𝜺𝑇𝑠𝑖𝑔𝑛(𝒔𝑖−1)]
𝑘

𝑖=2
. (27b) 

It is shown in [19] that expression (27b) is equal to 𝑪𝑑𝒅𝑘−1. 

As seen from (27b), the compensating control is of integral 
type, acting from the second sampling instant after the system 
starts (to eliminate overshoot) and contains three components. 
The first component is the integral of the sliding function, as in 
the previous estimator. The second component is the delayed 
signal of the first component with a weighting factor of 
(1 − 𝑞𝑇). In this way, these two components together in the 
complex domain are identified as a lead-lag filter. Besides 
integral action, these components also introduce differential 
action, which can be useful for compensating unmodeled inertial 
dynamics. The third component forces the system motion 
around the sliding surface in a zig-zag manner. 

III. BEHAVIOR OF SYSTEMS WITH UNMODELED DYNAMICS 

In this section, behavior of the systems with disturbance 
estimators will be examined in the presence of unmodeled 
inertial dynamics in the actuator and/or position and velocity 
sensors, using an example of a positional servo system. Its 
model (1) is a second-order system with scalar control 

 [
�̇�1(𝑡)
�̇�2(𝑡)

] = [
0 1
𝑎1 𝑎2

] ∙ [
𝑥1(𝑡)

𝑥2(𝑡)
] + [

0
𝑏

] (𝑢(𝑡) + 𝑓(𝑡)), (28) 

where 𝑥1 and  𝑥2 is the position and velocity, respectively, 
as directly measurable state coordinates. Systems of this type 
have been studied in various papers. In the study presented in 

[9], the system is depicted with disturbance compensation based 
on the first method (15), while in [11], INT disturbance 
compensation (24) is applied. In the paper [19], the third type 
of compensator (27) is employed. 

The control parameters for the control plant (28), as 
discussed in [9], are: 𝑎1 =0, 𝑎2 = −144, b=6. The sampling 
period is T=1 ms, and 𝒄𝑑 = [0.5 0.5]. 𝒄𝑑𝑨𝑑 = [15.4 9.7],  
𝒃𝑑 = [0.0047; 0.09139]. In this example, a more complex 
disturbance compared to the one given in [9] is used 

𝑓(𝑡) =
1

6
(ℎ(𝑡 − 20) − 2ℎ(𝑡 − 30)

+ (ℎ(𝑡 − 40) − ℎ(𝑡 − 60))5 sin0.5𝜋𝑡

+ 4ℎ(𝑡 − 60)

+ 20ℎ(𝑡 − 70) sin(0.125𝜋𝑡)). 

(29) 

which represents an external disturbance due to a change in 

mechanical load.  

Additionally, a control constraint |𝑢𝑘| ≤ 20  

will be imposed. 

The comparison of compensators will be conducted under 
nominal conditions and in the presence of unmodeled first-order 
inertial dynamics present in: 

1. The actuator (power amplifier) 
2. Position sensor  
3. Velocity sensor 
4. All the mentioned elements. 

Fig. 1 shows the MATLAB/Simulink model of the system 
with controllers and disturbance compensators of all three types. 
The simulation results are depicted iin Figs. 2 - 12. 

Fig. 2 illustrates the external disturbance used during the 
testing. It consists of constant components and sinusoidal 
components with specified frequencies and amplitudes. 

 

 
Figure 1.  The MATLAB/Simulink model of the system with disturbance compensators: switches S1-S6 are in position with activated the equivalent control - 

based SMC (ECBSMC) with the integral disturbance compensation in nominal plant with disturbance. Switch S2 can activate integral estimator or OSD estimator. 

If switch S1 is in the second position, then RL based control system [19] is active. Switch S3 activates modification of the integral compensator 
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Figure 2.  Disturbance 𝑓(𝑡) which acts on plant input. 

a)

 b) 

c) 

d) 

Figure 3.  Control (a, b,c) and position response (d) of the nominal system 

f(t)=0, q=5, 𝜀 = 3. 

First, Fig. 3 presents the following: control signals (a, b, c) 
and system response (d) without disturbance for the reference 
value r(t)=h(t-1). The system has no steady-state error with any 
type of controller. The system with ECBSMC has a smooth 
control signal, while the system based on RL (15) has a 
discontinuous control character, which is more clearly presented 
in Figs. 3b and 3c. 

Next, the system without compensation is subjected to the 
given disturbance. The results are shown in Fig. 4. It can be seen 
from this figure that the system has a good response (Fig. 4c) but 
does not have high accuracy under the given disturbance, as 
shown in the magnified detail, Fig. 4c. The control does not 
exhibit chattering. 

Remark 2: In this study, additional control of type (2) for 
systems with ECBSMC (Equivalent Control Based Sliding 
Mode Control) will not be applied in comparing compensation 
methods. In many cases, it is not necessary to apply (2) as it 
introduces chattering and zigzag motion around the sliding 
surface, which is a fundamental characteristic of the control 
algorithm (15). 

  a) 

  b) 

    c) 

 d) 

Figure 4.  Response of the system with disturbance and without disturbance 

compensation: (a, b) control, (c, d) position response. The system has 

satisfactory response (c) but with steady state error even if constant type of 

disturbance is applied (d).   f(t)=(29),q=5, 𝜀 = 3. 

If disturbance compensators are applied, the result is shown 
in Fig. 5, where high positioning accuracy is achieved (Fig. 5d). 
It is important to note that the system with the RL controller has 
a larger error under sinusoidal disturbances, which is due to the 
slightly lower controller gain compared to ECBSMC. 

When unmodeled inertial dynamics are introduced into the 
actuator, having a time constant 𝑇𝑎 = 1 ms, chattering occurs in 
the control, as shown in Fig. 6a. Chattering is more pronounced 
with the ECBSMC controller due to its high gain and control 
limitations. The system based on the RL controller has an 
increased amplitude but does not enter extreme regimes. The 
system with the OSD compensator exits the sliding mode and 
does not fully suppress the disturbance. Systems with the INT 
compensator and RL compensator remain in a quasi-sliding 
mode and are unaffected by the disturbance. However, 
oscillations of this amplitude in control are undesirable. 

Therefore, a compromise should be made to allow for less 
disturbance suppression while eliminating chattering. 

If the gain of the INT and RL type compensators is reduced 
by half, chattering disappears, as seen in Fig. 7a, and the system 
very effectively suppresses the disturbance (Fig. 7b, red and 
black lines). If the gain of the OSD compensator is set to the 
same value, the system is free of chattering but exhibits 
significant deviation from the reference value (Fig. 7b, blue 
line). 
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 a) 

 

      b) 

 c) 

     d) 

Figure 5.  Reponses of the nominal system with disturbance and different 
types of disturbance compensators. The system with OSD and INT 

compensator has identical response, while the system with RL compensator 

has slightly worse response. This is a consequence of using different type of 

controller. f(t)=(29),. q=5, 𝜀 = 3. 

 a) 

      b) 

Figure 6.  Responses of the system with unmodeled dynamics of the actuator 

𝑇𝑎 = 1 𝑚𝑠. The control introduces chattering (a) for any type of disturbance 

compensator with nominal gain k=1. As can be seen, amplitude of chattering 

is the smallest for the RL method. Systems with RL or INT compensation 
have satisfactory position responses while the system with OSD disturbance 

compensator has bad response (b). f(t)=(29),. q=5, 𝜀 = 3. 

 

 

Fig. 8 shows the case when unmodeled inertial dynamics 

with a time constant of 1 ms is introduced into the position 

sensor. It is observed that the system is not sensitive to these 

unmodeled dynamics. The simulation was repeated for 

unmodeled dynamics with increased time constants to 5 ms and 

10 ms, yielding the same results. 

a) 

b) 

Figure 7.  Responses of the system with unmodeled dynamics 𝑇𝑎 =1 ms and 

reduced disturbance estimator gains at ½ their nominal values (OSD 0.5, INT 
0.5 and RL 0.5). It can be seen that RL and INT compensator give high 

quality disturbance rejection and OSD does not.  

   a) 

b) 

Figure 8.  Reponses of the system with disturbance and unmodeled dynamics 

in positional sensor with 𝑇𝑝 =1 ms and nominal gains of the disturbance 

compensators. f(t)=(29),. q=5, 𝜀 = 3. 

Conversely, introduction of unmodeled dynamics with a 
time constant of 1 ms into the speed sensor leads to chattering 
(Fig. 9a), like the case with unmodeled dynamics in the actuator. 
Chattering is eliminated if the compensator gains are reduced to 
50% of their nominal values. As before, the second and third 
type of compensators are much more effective, as shown in Fig. 
10. 

The same conclusions are reached when unmodeled 
dynamics with a time constant of 1 ms are introduced into both 
the actuator and sensors. Chattering occurs. However, a system 
with compensatory gains reduced to 50% of their nominal values 
still has chattering. By reducing the gains to 0.2, 0.1 and 0.2, 
respectively for the first, second, and third type of compensators, 
the chattering is eliminated. The system with the second and 
third type of compensators is significantly more efficient, as 
shown in Fig. 11. 
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In conclusion, it should be noted that in practice, an encoder 
is used as a position sensor, generating a digital signal without 
inertial delay. Therefore, the results regarding the unmodeled 
dynamics of the position sensor have no practical significance, 
except to demonstrate the system low sensitivity to unmodeled 
dynamics in the measurement of the controlled variable. On the 
other hand, the presence of inertial unmodeled dynamics in the 
actuator (power amplifier) is very realistic. In the case of DC 
motors, the rotor current dynamics in the positional system is 
usually neglected during the design, which can be equated to 
actuator unmodeled dynamics. Regarding the speed 
measurement, the speed is most often estimated in practice, and 
this signal may also have unmodeled dynamics, which must be 
considered in the design and tuning of high-precision positional 
servo systems. 

a) 

b) 

Figure 9.  Fig. 9. Responses of the system with unmodeled dynamics in the 

speed sensor 𝑇𝑠 = 1 ms. The control induces chattering (a) for any type of 

disturbance compensator with nominal gain k=1. As can be seen, amplitude of 

chattering is smallest for the RL method. Systems with RL or INT 

compensation have satisfactory position responses while the system with OSD 

disturbance compensator has bad response (b), f(t)=(29),. q=5, 𝜀 = 3. 

  a) 

  b) 

Figure 10.  Fig. 10. Responses of the system with unmodeled dynamics 𝑇𝑠 =1 

ms and decreased disturbance estimator gains at ½ of their nominal values 

(OSD 0.5, INT 0.5 and RL 0.5). RL and INT compensator give high quality 

disturbance rejection and OSD not. f(t)=(29),. q=5, 𝜀 = 3. 

The conducted research highlights the limitations of 
applying the compensators based on the DT model of the control 
plant due to unmodeled dynamics and the practical impossibility 
of changing its parameters. This limitation is not observed with 
the second and third type of compensators, which have integral 
action and the capability to adjust gains independently of 
changes in the model of the control plant. It should be noted that 
the variations in model parameters a and b in the observed 

example has a practically negligible impact on disturbance 
compensation, as both uncertainties are reflected as disturbances 
in the control channel. Furthermore, it is observed that the 
second type compensator is a special case of the third type 
compensator. For q=1/T and 𝜀 = 0, the third type compensator 
becomes the second type compensator, and for 𝑞 ≠ 1/𝑇  and 
𝜀 = 0 , the third type compensator becomes a lead-lag 
compensator.  

  a) 

  b) 

 c) 

Figure 11.  Responses of the system with disturbance and unmodeled 

dynamics in the actuator, position and speed sensors 𝑇𝑎 = 𝑇𝑝 = 𝑇𝑠 =1 ms1, 

with adjusted compensator gains to avoid chattering. RL compensator with 

gain of 0.2 and INT compensator with gain 0.1 give very good disturbance 
rejection without chattering, while OSD compensator has bad disturbance 

rejection capability. f(t)=(29),. q=5, 𝜀 = 3. 

    a) 

   b) 

  c) 

Figure 12.  Response of the system with unmodeled dynamics 𝑇𝑎 =1 ms, with 

control (13) and disturbance compensator (27b) with q=0.5/T and 𝜀 = 0. 

When such a compensator is applied to a system with an 
ECBSM controller and a plant with unmodeled inertial 
dynamics in the actuator (switch S3 in Fig. 2 is on), the result is 
shown in Fig. 12. These results indicate the significant potential 
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of such a system, which, under the given conditions, has very 
high accuracy and no chattering. This compensation capability 
should be thoroughly analyzed in the presence of measurement 
and other noises in practical systems due to the differential 
action in the compensator. 

CONCLUSIONS 

In this paper, control of time invariant linear CT plants by 
using DT sliding modes with disturbance estimators/ 
compensators are analyzed. Three simple types of disturbance 
estimators/compensators are inspected. All three types of 
estimators estimate disturbance with one sampling period delay. 
One of them is based on nominal DT plant model while the other 
two are based on the fact that the matched disturbance is directly 
contained in the sliding function with one sampling time delay. 
By adequately processing, the disturbance can be extracted and 
used for compensation. In the paper is shown that all three 
estimators/compensators give very close results for the nominal 
plant (plant without unmodeled dynamics). In the case of plants 
with unmodelled inertial dynamics of the first order, present in 
the actuator or/and position or speed sensors, there are 
significant differences. The system is less sensitive to 
unmodeled dynamics in the position sensor and is much more 
sensitive for unmodeled dynamics in the actuator and the speed 
sensor. Compensators based on the integration of the sliding 
function can be easily adapted by decreasing integral gain to 
avoid chattering in control system with unmodeled dynamics. 
Compensator based on nominal DT plant model has possibility 
to avoid chattering as well, but with very bad rejection capability 
of disturbances. In this way, beside simple realization, 
compensators based on the sliding function fully reject 
disturbances of constant type and significantly suppress slow-
varying disturbances. By adjusting their gain, chattering 
problem can be reduced.  

Further investigation will be dedicated to adaptation of the 
compensator based on DT plant model for possible use in the 
system with unmodelled dynamics. Barring that, it is necessary 
to compare the above considered compensators with 
compensators based on another principles, preferably with 
disturbance observers of Luenberger type. 
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