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Abstract— A new design approach to discrete time sliding-mode-based controllers with disturbance compensation is proposed in this 

paper. The approach is applicable for linear time invariant plants with matched disturbances. Starting from the known methods for 

disturbance estimation (i) using discrete time nominal plant model and (ii) using original sliding mode control design method, full 

integration of those two algorithms into single one is proposed. Besides, the proposed algorithm can be additionally simplified for a 

small sampling time. The simplified algorithm does not directly depend on the equivalent control but only on the present and previous 

values of the sliding variable and previous value of the control. The obtained results are compared with the corresponding system with 

disturbance estimator based on sliding variable measurement. It is established that both methods give identical results in the nominal 

case. The method is illustrated in a positional servo system design. Comparative analysis of different methods is done by computer 

simulation.  
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I.  INTRODUCTION 

 There are three basic requirements in the design of high-

quality automatic control systems: (i) achieving the required 

accuracy of reference tracking; (ii) reaching the defined state at 

the desired speed and (iii) robustness to external disturbances 

(from the load) or internal disturbances (parameter variations 

and uncertainties). Disturbances affecting the object can be 

classified into disturbances that act exclusively through the 

control channel (always the case with the first order plants), 

disturbances that act outside the control channel, and 

disturbances of the combined type. This paper deals with plants 

having the first type of disturbances, which are said to meet the 

matching conditions. Control of such plants using continuous 

time sliding modes leads to complete system invariance to 

matched disturbances [1]. However, the time discretization of 

continuous sliding mode control algorithms prevents 

occurrence of ideal sliding regime. Consequently, a quasi-

sliding mode [2] arises due to time delay in data processing, 

which represents a chaotic zig-zag motion of the state point 

around the given sliding manifold. This creates unwanted 

chattering, i.e. high-frequency vibrations in electromechanical 

systems that causes wear of transmission elements (gears, beds, 

carriers). Algorithms that considerably reduce chattering are 

based on the realization of the so-called ideal discrete time 

sliding mode, using equivalent control [3]-[6]. These 

algorithms, in the case of nominal systems, keep the system 

state exactly on the given sliding manifold in the sampling 

instants. If the plant is continuous, this means that the system 

state can leave the sliding manifold between two consecutive 

sampling instants, once again resulting in the quasi-sliding 

mode. However, the quality of such sliding mode is better than 

the previous approach. The third approach in the discrete time 

sliding mode design is to deliberately provide a zigzag motion 

around the given sliding surface [7], with requirement for the 

system state to cross the sliding surface during each sampling 

period. This also implies deterministic chattering. Some 

methods do not require the mandatory sliding surface 

intersection at each sampling period [8], which mitigates 

chattering. Also, there are methods that convert continuous time 

control algorithms into discrete ones without pronounced 

chattering, using the implicit implementation of the signum 

function [9], [10]. 

Loss of invariance to matched disturbances characterizes all 

discrete time methods of realizing the quasi-sliding regime 

since disturbances are not subjected to time discretization. 

Thus, discrete time sliding modes are not invariant, but they 

have a certain robustness. To improve robustness, several 

possibilities were proposed: increasing the sampling frequency 

(the shorter the sampling period, the closer the system is to its 

continuous counterpart), introducing an additional switching 

component to the equivalent control that defines the ideal 

discrete time sliding mode (which induces additional 
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chattering), more adequate selection of the sliding variable [11], 

introduction of the disturbance estimator for its compensation. 

 The focus of this paper is on the application of a disturbance 

estimator, which is based on the nominal control plant model. 

Such an estimator estimates the disturbance with a delay of one 

sampling period and it is usually implemented in a system with 

the discrete time sliding mode based on the application of 

equivalent control. In addition, a brief review of the estimator 

based on the integral of the sliding variable is given. 

The main contribution of the paper is threefold: (1) the 

integration of the disturbance estimator of the first type into the 

discrete sliding mode control algorithm design; (2) the 

simplification of the control algorithm for systems with a higher 

sampling frequency. The given approach generates a new way 

of designing discrete time servo systems, in which equivalent 

control does not participate explicitly; (3) the establishing 

equivalence between the two methods of disturbance 

compensation. The proposed approach will be illustrated on the 

second-order positional servo system. 

The paper is organized as follows. The second section lists 

the known results that form the basis of the proposed algorithm. 

Two disturbance estimation methods are given. The first one is 

based on the nominal system model and can be applied for all 

types of discrete time control. The second method uses the 

integral of the sliding variable and is applicable only to systems 

with a discrete time sliding mode. An original design method of 

discrete time sliding control systems is proposed. The third 

section describes the method of incorporating the disturbance 

estimator into the discrete time sliding mode control algorithm, 

and its modification for systems with higher sampling 

frequencies. The fourth section is devoted to a servo system 

design, where simulation is used to compare the proposed 

method with other procedures. The paper ends with conclusions 

and a list of references on which the paper relies. 

II. PRELIMINARY ANALYSIS 

Consider a linear time invariant continuous time dynamic 

system, 

 𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) + 𝑫𝒇(𝑡), (1) 

where 𝒙(𝑡) ∈ ℝ𝑛  is the measurable state vector, 𝒖(𝑡) ∈ ℝ𝑚  
and 𝒇(𝑡) ∈ ℝ𝑙  are the control and disturbance vectors, 

respectively. Matrices 𝑨, 𝑩 and 𝑫 are constant of appropriate 

dimensions. It is assumed that the disturbance enters the system 

through control channel, i.e. fulfills the matching conditions [1] 

 rank([𝑩 𝑫]) = rank (𝑩), (2) 

and also, it holds |𝒇(𝑡)| ≤ 𝒇0 < ∞; |𝒇̇(𝑡)| ≤ 𝒇1 < ∞. 

Time discretization of the system (1) with the sampling 

period 𝑇, leads to the discrete time model (𝒙(𝑘𝑇) ≡ 𝒙𝑘, 𝑘 ∈ 𝑁0) 

 𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑𝒖𝑘 + 𝒗𝑘, (3) 

where 𝑨𝑑 = 𝑒𝑨𝑇;  𝑩𝑑 = ∫ 𝑒𝑨𝜏𝑑𝜏
𝑇

0
𝑩,  

𝒗𝑘 = ∫ 𝑒𝑨𝜏𝑫𝒇(𝑘 + 1)𝑇 − 𝜏)𝑑𝜏
𝑇

0
. 

A. Disturbance estimation methods 

This section presents two simple disturbance estimation 

methods in digital control systems. The first one is universal 

and can be applied to any digital control system. The second 

one is applicable only to discrete time sliding mode control 

systems. Both methods give disturbance estimate delayed by 

one sampling period. 

A1. The first estimation method 

This method is based on discrete time model of nominal 

plant (3), and first time applied in discrete-time sliding mode 

systems in [5]. 

The model (3) can be rewritten into equivalent form 

 𝒙𝑘 = 𝑨𝑑𝒙𝑘−1 + 𝑩𝑑𝒖𝑘−1 + 𝒗𝑘−1, (4) 

from which it can be found  

 𝒗𝑘−1 = 𝒙𝑘 − 𝑨𝑑𝒙𝑘−1 − 𝑩𝑑𝒖𝑘−1. (5) 

 In general case, 𝒗𝑘 does not meet the matching conditions 

(2). However, if the sampling period 𝑇 is sufficiently small, the 

unmatched part of the disturbances can be neglected compering 

to the matched part, which will be applied below. In that case, 

𝒗𝑘 = 𝑩𝑑𝒅𝑘, and (3) can be rewritten as  

 𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑(𝒖𝑘 + 𝒅𝑘). (6) 

Using the estimated value 𝒗𝑘−1 = 𝑩𝑑𝒅𝑘−1  for the 

compensation with the opposite sign in (6) with respect to 𝒅𝑘, 

it is obtained, 

 𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑑(𝒖𝑘 + 𝒅𝑘 − 𝒅𝑘−1). (7) 

If the disturbance is continuous and bounded (as assumed), 

the uncompensated disturbance part 𝒅𝑘 − 𝒅𝑘−1  is of order 

𝑂(𝑇2), [5]. 

A2. The second estimation method 

This method is based on the fact that the disturbance, which 

fulfills (2), is directly reflected with a time delay of one 

sampling period in the sliding variable, which is available for 

measurement. However, unlike the first estimation method, the 

measured signal cannot be directly added to the control for 

disturbance compensation but must be additionally integrated. 

This is like the classical introduction of proportional-integral 

(PI) control into the channel of system error signal. In this case, 

a sliding variable is used instead of the error signal, where the 

sliding variable is a linear combination of the state variables and 

should be zero as well. More on this approach will be given in 

the next section, after the introduction of the basic concepts of 

sliding modes in discrete time systems. 

B. Discrete-time sliding mode with equivalent control 

Application of these disturbance compensation methods 

into conventional (first order) discrete time sliding mode 

control design will be presented. An equivalent control 

approach will be used [3]-[5], [13]. 

System model (3) is extended by sliding surface equation, 

 𝒔𝑘 = 𝑪𝑑𝒙𝑘 = 0, 𝑪𝑑 ∈ 𝑅𝑚×𝑛, (8) 
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along which a discrete time sliding mode should be achieved. 

Hence, the first step is to define sliding variable (8), which 

defines the system motion in the sliding mode, based on the 

spectrum of the desired eigenvalues (poles) of the system. In a 

continuous-time realization, a control achieving the sliding 

mode consists of two components: the component providing 

sliding surface reaching and the component ensuring sliding 

motion. The reaching component is a discontinuous function of 

the 𝜶sign(𝒔) type, where 𝜶 is a diagonal matrix with suitably 

chosen elements, and the sliding mode component is the 

equivalent control determined from the condition of satisfying 

the system dynamics in the sliding mode. In the non-nominal 

system, 𝜶 depends on the absolute value of the disturbance. In 

a discrete-time system under nominal conditions, equivalent 

control provides both reaching and sliding [3], i.e. the control is 

unique, which is not the case with continuous time systems. 

However, in case of non-nominal conditions, it is necessary to 

introduce a discontinuous control component into the discrete 

time system as well, in order to compensate for disturbances. 

But, if disturbance compensation is previously introduced, the 

discontinuous control component should have a much smaller 

amplitude (only covers 𝒅𝑘 − 𝒅𝑘−1). This reduces chattering. In 

practice, discontinuous control is often not necessary. 

Equivalent control, with disturbance compensation, provides 

required system properties: fast response, high steady-state and 

dynamic accuracy and high robustness to disturbances that meet 

condition (2). These are more satisfied if 𝑇 is smaller. 

Equivalent control in discrete-time sliding mode control 

system is found from the condition that from any initial state 

𝒙𝒌(0), the system reaches in one step 𝒔𝑘+1=0, i.e. from the 

condition [3]-[5] 

 𝒔𝑘+1 = 𝑪𝑑𝒙𝑘+1 = 0. (9) 

If 𝑪𝑑  is known, replacement of (3) into (9) and solving the 

obtained equation with respect to 𝒖𝑘 gives, 

 𝒖𝑘 = −(𝑪𝑑𝑩𝑑)−1(𝑪𝑑𝑨𝑑𝒙𝑘 − 𝑪𝑑𝒗𝑘).  (10) 

Since generally 𝒗𝑘 cannot be measured, the equivalent control 

for the nominal system can be defined as 

 𝒖𝑘,𝑒𝑞 = −(𝑪𝑑𝑩𝑑)−1𝑪𝑑𝑨𝑑𝒙𝑘.  (11) 

To compensate disturbance, a discontinuous component is 

usually added to the equivalent control, so the overall control 

becomes, 

 𝒖𝑘 = 𝒖𝑘,𝑒𝑞 − 𝜶sign(𝒔𝑘), (12) 

where 𝜶 is the diagonal matrix with adequately selected 𝛼𝑖. 

If disturbance compensation is previously introduced, based 

on estimator (5), the control of the system becomes, 

 𝒖𝑘 = −(𝑪𝑑𝑩𝑑)−1(𝑪𝑑𝑨𝑑𝒙𝑘 − 𝑪𝑑𝒗𝑘−1), (13) 

or 

𝒖𝑘 = −(𝑪𝑑𝑩𝑑)−1 (𝑪𝑑((𝑨𝑑 − 𝑰)𝑥𝑘 + 𝑨𝑑𝒙𝑘−1 + 𝑩𝑑𝒖𝑘−1)) (14) 

The control (14) will be simplified using model (6) and the 

original way of selection of 𝑪𝑑 [12]. 

 

1 The compensated nominal system is described by 𝒙𝑘+1 =(A-BK) 𝒙𝑘 . 

C. One way of designing sliding modes 

This section gives a brief presentation of a way of designing 

sliding modes, proposed in [12]. It includes sliding surface 

determination that is based on the equivalent control of the 

nominal system (1). The method is applicable for both 

continuous and discrete time sliding regimes. The method is 

based on the fact that the selection of the matrix 𝑪𝑑  is not 

unique and that 𝑪𝑑  can be specified in advance. The method 

starts from the condition that the matrix 𝑪𝑑𝑩𝑑  must be non-

singular but can have different values at the designer's choice, 

including the value of the unit matrix, which is the basic 

assumption of this approach. Then, based on the spectrum of 

desired eigenvalues of the system in the continuous time 

domain, which gives the designer a clear insight into the system 

dynamics, the corresponding desired eigenvalues can easily be 

found in the discrete shift (𝑧) domain or in the discrete δ-domain 

[13]. In addition, the procedure relies on the system state 

feedback control design method based on pole placement. 

It is known that the spectrum of desired system eigenvalues 

in the sliding mode of the first order (conventional sliding 

modes) contains 𝑚 zero eigenvalues (equal to the number of the 

control inputs) and 𝑛 − 𝑚  desired stable eigenvalues. These 

eigenvalues determine the state feedback, defined by the gain 

matrix 𝑲  such that the matrix (A-BK) 1  has the desired 

eigenvalues. 

The procedure starts from the system of the equations2 

 𝐂(𝑨 − 𝑩𝑲) = 𝟎 , (15a) 

 𝑪𝑩 = 𝑰𝑚. (15b) 

Since matrix 𝑪𝑩 = 𝑰𝑚  has full rank, relation (15a) can be 

written in the form, 

 𝐂𝑨 = 𝑲, (16) 

which is equivalent to (𝑪𝑩)−1𝑪𝑨 if 𝑪𝑩 ≠ 𝐼𝑚 . Now, (15) can 

be expressed as 

 𝑪[𝑨 𝑩] = [𝑲 𝑰𝑚]. (17) 

The solution can be obtained as 

 𝑪 = [𝑲 𝑰𝑚][𝑨 𝑩]†,  (18) 

where [𝑨 𝑩]† is the pseudoinverse matrix. 

 

Remark 1: Formula (18) for calculation of matrix 𝑪, which 

defines the sliding surface, has been derived from the conditions 

𝑪𝑩 = 𝑰𝑚 and 𝐂𝑨 =  𝑲. In large number of publications on this 

topic, matrix 𝑪 is determined using different approaches or it is 

predetermined, when the condition 𝑪𝑩 = 𝑰𝑚  is not fulfilled. 

Since the matrix 𝑪 can be scaled by any positive factor, under 

condition that the equivalent gain remains unchanged, i.e. 

(𝑪̅𝑩)
−1

∗ 𝑪̅𝑨 = 𝑲 , where the matrix 𝑪̅  satisfies 𝑪̅ ∗ 𝑩 ≠ 𝑰𝑚 . 

Then the matrix 𝑪  that fulfills 𝑪𝑩 = 𝑰𝑚  can be easily 

determined from 

2 Here the matrix notations do not subscript d, since the procedure is identical 

both for continuous and discrete time sliding modes. 
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 𝑪 = (𝑪̅𝑩)−1 ∗ 𝑪̅. (19) 

Finaly, it will be proved that a matched disturbance is 

directly reflected on the sliding variable (8). According to (6), 

(11), 𝑪𝑑𝑩𝑑 = 𝑰𝑚  and 𝒖𝑘 = 𝒖𝑘,𝑒𝑞 = −𝑪𝑑𝑨𝑑𝒙𝑘 , the sliding 

variable dynamics can be expressed as  

 𝒔𝑘+1 = 𝑪𝑑𝒙𝑘+1 = 𝑪𝑑𝑨𝑑𝒙𝑘 + (𝒖𝑘 + 𝒅𝑘), (20) 

from which it follows 𝒅𝑘 = 𝒔𝑘+1, or 𝒅𝑘−1 = 𝒔𝑘. 

It was shown in [14] how the compensation can be achieved 

by integrating the sliding variable. This approach was taken in 

[15] and [16] on positional and speed servosystems, 

respectively, having the experimental conformation. 

III. CONTROLLER WITH THE INCORPORATED DISTURBANCE 

ESTIMATOR 

Starting from (6) rewritten as 

 𝒙𝑘 = 𝑨𝑑𝒙𝑘−1 + 𝑩𝑑(𝒖𝑘−1 + 𝒅𝑘−1), (21) 

multiplying both sides by 𝑪𝑑  and assuming 𝑪𝑑𝑩𝑑 = 𝑰𝑚 , it is 

obtained, 

𝒅𝑘−1 = 𝑪𝑑𝒙𝑘 − 𝑪𝑑𝑨𝑑𝒙𝑘−1 − 𝒖𝑘−1 = 𝒔𝑘 − 𝑪𝑑𝑨𝑑𝒙𝑘−1 − 𝒖𝑘−1 (22) 

The control that provides 𝒔𝑘+1 = 𝑪𝑑𝒙𝑘+1 = 0 according to (6) 

is 

 𝒖𝑘 = −𝑪𝑑𝑨𝑑𝒙𝑘 − 𝒅𝑘 . (23) 

Replacement of 𝒅𝑘−1 from (20) instead of 𝒅𝑘 into (23), yields 

 𝒖𝑘 = −𝑪𝑑𝑨𝑑(𝒙𝑘 − 𝒙𝑘−1)−𝒔𝑘 + 𝒖𝑘−1. (24) 

Relation (24) represents the complete (overall) sliding 

control, including disturbance estimator (5), that is (22), in 

which the first right hand term is the difference between the 

equivalent control from 𝑘 and 𝑘 − 1 sampling instant. It will be 

shown that this term consists of two parts, which one of them is 

not dominant and can be neglected in practice, under certain 

conditions. 

A. The reduced controller 

The relation (24) can be simplified for sufficiently small 𝑇. 

Consider the term  𝑪𝑑𝑨𝑑(𝒙𝑘 − 𝒙𝑘−1),  using possible 

representation of matrix 𝑨𝑑 

  𝑨𝑑=𝑒𝑨𝑇=𝑰𝑛 + 𝑨𝑇 +
𝐴2𝑻2

2
+ ⋯. (25) 

Then, (24) can be expanded as 

𝒖𝑘 = −𝑪𝑑(𝒙𝑘 − 𝒙𝑘−1) − 𝑪𝑑𝑨𝑇(𝒙𝑘 − 𝒙𝑘−1) − ⋯ 

−𝒔𝑘 + 𝒖𝑘−1.  (26) 

Value of 𝒙𝑘  in the sliding mode is of order 𝑂(𝑇)  while 

(𝒙𝑘 − 𝒙𝑘−1)  is of order 𝑂(𝑇2)  [17)]. Therefore, the second 

right hand side term  𝑪𝑑𝑨𝑇(𝒙𝑘 − 𝒙𝑘−1) is of order 𝑂(𝑇3) and 

can be neglected if 𝑇 ≪ 1. Finally, it is obtained, 

 𝒖𝑘 = −2𝒔𝑘+𝒔𝑘−1 + 𝒖𝑘−1. (27) 

Error that arises by such approximation is of order 𝑂(𝑇2) 

with respect to the sliding variable and of order 𝑂(𝑇) [17] with 

respect to 𝒙𝑘 , since 𝒅𝑘 − 𝒅𝑘−1  is of order 𝑂(𝑇2) . It can be 

easily shown that using (27), the considered errors will remain 

of the same order with additional term 𝑪𝑑𝑨𝑇(𝒙𝑘 − 𝒙𝑘−1) , 

which can be neglected since it is of order lower by one. 

In this way, it was showed that by measuring only the 

sliding variable at the 𝑘-th moment and its value and control 

from the previous sampling, high-quality control of the system 

can be realized, assuming that the sampling period is small 

enough and the system is without unmodeled dynamics. In other 

words, the equivalent control is explicitly absent in the control. 

The same result can be obtained if the disturbance 

estimation by integrating the sliding variable is applied. Then 

the control becomes 

 𝒖𝑘 = −𝑪𝑑𝑨𝑑𝒙𝑘 − 𝑢𝑖𝑛𝑡,𝑘, (28a) 

 𝒖𝑖𝑛𝑡,𝑘 = 𝒖𝑖𝑛𝑡,𝑘−1 + 𝑲𝑖𝑛𝑡𝒔𝑘, (28b) 

where 𝑲𝑖𝑛𝑡  is the diagonal matrix of gains of the integral 

compensator. Its values may be chosen from the interval 0 ≤
𝑘𝑖𝑛𝑡,𝑖 ≤ 1, 𝑖 = 1, … , 𝑚. For 𝑲𝑖𝑛𝑡 = 𝑰, constant disturbances are 

eliminated in one sampling interval, and for 𝑘𝑖𝑛𝑡,𝑖 < 1 

compensation is asymptotic that is faster for 𝑘𝑖𝑛𝑡,𝑖 → 1 . 

Disturbances that are not constant are attenuated even more if 

their rate of change is lower in relation to the system sampling 

frequency.  

In the same manner can be shown that if (25) is used, 

description (28) results in 

 𝒖𝑘 = −𝒔𝑘 − 𝒖𝑖𝑛𝑡,𝑘, (29a) 

𝒖𝑖,𝑘 = 𝒖𝑖𝑛𝑡,𝑘−1 + 𝑲𝑖𝑛𝑡𝒔𝑘. (29b) 

 As already mentioned, both algorithms estimate the 

disturbance with a delay of one sampling period. However, are 

the controls (24) and (28) identical in everything since they 

have different expressions? The following proposition indicates 

the relation of both the complete controls (24) and (28) and the 

reduced versions (27) and (29), respectively. 

Proposition 1: Control laws defined by (24) and (28) are 

identical, as well as (27) and (29) under nominal conditions and 

for 𝑲𝑖𝑛𝑡 = 𝑰𝑚. 

Proof: 

Transform (24) into complex 𝑧-domain 

 𝒖(𝑧) = −𝑪𝑑𝑨𝑑
𝑧−1

𝑧
𝒙(𝑧) − 𝒔(𝑧) +

1

𝑧
𝒖(𝑧). (30) 

The control can be found from (30) as 

 𝒖(𝑧) = −𝑪𝑑𝑨𝑑𝒙(𝑧) − 𝒔(𝑧)
𝑧

𝑧−1
.  (31) 

Transform (28b) into complex 𝑧-domain, yielding, 

𝒖𝑖(𝑧) =
𝑧

𝑧−1
𝑲𝑖𝑛𝑡𝐬(𝑧).  (32) 

If (32) is replaced into the transformed (28a), for 𝑲𝑖𝑛𝑡 = 𝑰𝑚 the 

result is identical to (31). 

 Further, by replacement of (32), which is the complex 
representative of (29b), into the complex representative of 
(29a), and by multiplying the resulting relation by 𝑧 − 1 
and going back to the time domain, it is obtained, 
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𝒖𝒊,𝒌 = −(𝑰𝑚 + 𝑲𝑖)𝒔𝑘 + 𝒔𝑘 + 𝒖𝑖,𝑘−1.  (33) 

For 𝑲𝑖𝑛𝑡 = 𝑰𝑚, (33) becomes equal to (27), i.e. (27) and (29) 

are the equivalent controls. ∎ 

Remark 2: It can be concluded form (29) that the estimator 

based on the integral of the sliding variable has the possibility 

of tunning integral gain 𝑲𝑖𝑛𝑡 , which can have particular 

importance in case of systems having unmodeled dynamics, 

when lowering the integral gain can eliminate or alleviate the 

chattering [20]. 

Remark 3: Both estimators have integral action. This 

introduces overshoot in reaching the sliding surface even in 

systems without input signal saturation. The simplest way to 

eliminate the overshoot in systems with control (13) is to 

postpone activation of the estimator by one sampling period 

from the initial time. For the systems with control (24) or (25), 

integrators initial states should be set to −𝒔(0), i.e. 𝒖𝑘−1(0) =
−𝒔(0). For the systems with control (28) and (29) the easiest 

way is to delay the integrator input by one sampling period. 

Summarizing, system stability is ensured by selection of a 

stable sliding surface, by choosing a control that reaches the 

sliding surface in one step, as well as by additional 

compensation of disturbances. 

In practice, discrete time sliding mode control can have very 

large magnitudes, which requires the introduction of 

restrictions in the controller or restrictions are present in the 

plant itself. In that case, stability problems and problems of 

integrator windup arise, because controls (13), (24), (27), (28) 

and (29) contain integral action. In addition, the dynamics and 

system performance with reduced controls will be analyzed. 

These controls are performed under the assumption that the 

sampling period 𝑇 is small enough. However, by neglecting the 

equivalent control component, the conditions for reaching the 

sliding surface and the system stability can be endangered. This 

means that in that case the stability conditions of the system 

should be examined in relation to the sampling period. This 

especially applies to the system with the disturbance estimator 

of the first type, which does not have the possibility of adjusting 

the integral gain. The system with reduced control with an 

estimator of the second type has a structure similar to the 

discrete realization of the super twisting algorithm (STA) [21]. 

STA is obtained from the given structure by introducing the 

non-linear discontinuous term 𝑘√|𝒔|  sign(𝒔) into the control 

circuit (29a), instead of the linear term 𝒔 . That possibility 

requires additional analysis, which is beyond the scope of this 

paper. Stability analyzes of similar systems with complete 

algorithms with or without control constraints can be found in 

[5], [18]. 

Here, an original way of eliminating the problem of 

integrator windup will be pointed out, which resulted from the 

realization of the system with the first method of disturbance 

compensation. The integrator should contain a limiter that is in 

 

3 A more complex system is proposed in [19], based on equivalent control 

(11) and disturbance estimator (5), i.e. with overall control (13), which is here 

taken as a comparison reference. 

the direct branch and has a positive feedback loop via the 

element of one-time delay (see Fig. 1). 

IV. AN ILLUSTRATIVE EXAMPLE 

This section gives an example of a typical positional servo 

system, which is described by a second order model (1) with 

scalar control, 

 [
𝑥̇1(𝑡)
𝑥̇2(𝑡)

] = [
0 1
0 𝑎

] ∙ [
𝑥1(𝑡)

𝑥2(𝑡)
] + [

0
𝑏

] (𝑢(𝑡) + 𝑓(𝑡)). (34) 

State variables 𝑥1, 𝑥2 are position and velocity that are available 

for measurement. Such systems are treated in many papers. In 

[15] is considered a system with disturbance compensation 

using integration of the sliding variable (26), while in [19] the 

disturbance compensation of type (5) is used. This section uses 

data from [19]3 to compare with the proposed controller (22) 

and its simplified variant (27), as well as with the disturbance 

compensation using sliding variable integration (28) and (29). 

Plant parameters [19] are: 𝑎 = −144, 𝑏 = 6, initial state 

𝑥(0) = [−1 0]T , sampling period 𝑇 = 1 ms and 𝒄̅ =
[0.5 0.5]. An external disturbance that affects the system is 

given by,  

𝑓(𝑡) = − {

1 for 0 ≤  t ≤  30;
 1 +  2.2 sin(0.5πt) for 30 ≤  t ≤  60;

1 +  8.8 sin(0.5πt) for 60 ≤  t ≤  90.
 (35) 

Here, the control constraint |𝑢𝑘| ≤ 50 will be imposed. 

Based on the system parameters, to compare the systems 

with identical dynamical properties, system eigenvalues in [19] 

is determined (notice that 𝒄𝒃𝑑 ≠ 1) using 

𝑝𝑑 = eig(𝑨𝑑 − 𝒃𝑑(𝒄𝒃𝑑)−1𝒄𝑨𝑑) = [0 0.999]. (36) 

Now, the system is redesigned 𝒄𝑑𝒃𝑑 = 1. 

 

Figure 1. Block diagram of the servo system according to algorithm (27) with 

control signal limitation and anti-windup structure. 

The following Matlab commands determine vectors 𝒌𝑑 and 

𝒄𝑑 using our design procedure: 
A= [0 1;0 -144];b=[0;6];T=0.001; 

%Shift domain design 

[Ad, bd]=c2d(A, b, T);pd=[0 0.999]; 

kd=acker(Ad, bd, pd); 

cd= [kd 1]*pinv([Ad bd]); 

The obtained values are: 

𝒌𝑑 = 𝒄𝑑𝑨𝑑 = [178.954567     155.041898]; 
𝒄𝑑 = [𝑐𝑑1  𝑐𝑑2] = [178.954567     178.862943]; 
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Fig. 1 shows structural block diagram of the system. 

Simulation results are given in Fig. 2 – Fig. 5. 

 

 

Figure 2. Control signals of the systems with accustomed disturbance 

estimator/compensator (13) from [19], with the proposed control (24) and with 

the simplified control (27). 

 Fig. 2 shows control signals of the considered control 

algorithms. It can be observed that, except in the starting 

instant, the signals are identical in the whole time-range. 

Consequently, system responses are identical as well, which 

can be confirmed in Fig. 3a. The enlarged steady-state detail in 

Fig. 3b indicates high positioning accuracy, even under the 

action of varying disturbance. 

 To see the efficiency of the applied compensators, Fig. 3c 

shows the system response without disturbance compensation. 

It can be observed that the system has a steady state error even 

when constant disturbance is acting. 

The same results are obtained in the case of disturbance 

compensation using integration of the sliding variable. 

a) 

 
b) 

c) 

Figure 3. Comparative results of the systems with control (13) [19] and the 

proposed solution: a) system response to reference 10h(t) and disturbance (35); 

b) a detail of steady state behavior of the system with disturbance compensation 
and controls (13), (24) and (27). c) a detail of steady state behavior of the system 

without disturbance compensation. 

Figure 4.  

Comparing the behavior of the sliding variables of the system 

[19] and the proposed system does not make much sense 

because the vectors 𝒄̅ and 𝒄𝑑 that define the sliding surface are 

very different. If, however, one of them is scaled to bring it to 

the same level, diagrams like those in Fig. 4 are obtained. Fig. 

4a shows that the sliding variables are identical, although Fig. 

4b, which represents a detail of Fig. 4a, indicates certain 

differences in the reaching phase. This difference is a 

consequence of two factors: (i) mismatch of the ratio of the 

coefficients of the vector  𝒄̅, which is 1 in the system [19] and 

1.0005 in the proposed system; (ii) neglecting of 𝑪𝑑𝑨𝑇(𝒙𝑘 −
𝒙𝑘−1) in the control algorithm. 

 

a) 

b) 

Figure 5. Sliding variables (functions) of the systems with control (13) [19] 
and the proposed controls (24) and (27). It should be emphasized that the sliding 

surface vectors 𝑪𝑑 are different. In the proposed system coefficients are 358 

times larger, so they are scaled by that factor to show that the sliding variables 

have the same shape.  

a) 

b) 

Figure 6. A detail of the reaching phase and elimination of the step 

disturbance 𝑓(𝑡) = 100ℎ(𝑡 − 0.02) in the system without control limitation: 

a) system with the controls (24) and (28); b) system with the controls (27) and 

(29). 
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 Fig. 5 shows details of sliding surface reaching and 

elimination of step disturbance 𝑓(𝑡) = 100ℎ(𝑡 − 0.02) for the 

system without input limitation. It can be clearly seen from the 

figure that the disturbance estimation process is delayed by one 

sampling period, and the compensation process is realized for 

another discretization period. Therefore, elimination and 

compensation of constant disturbances takes two sampling 

periods at unit gain of the integrator. It is also observed that the 

systems with simplified controls have a damped oscillatory 

character in the reaching mode, which indicates stability 

problems if the sampling period is not small enough. 

 

V. CONCLUSIONS 

The paper analyzes the control system of a linear time 

invariant continual plant using discrete time sliding mode 

control with a disturbance estimator/compensator. Two types of 

estimators were considered. Both estimate a disturbance with a 

delay of one sampling period. One is based on the nominal 

discrete time model of the plant, and the other on the fact that 

the disturbance, which enters through the plant control channel, 

is directly "seen" in the sliding variable, from which it is 

extracted by a known estimation procedure. It is shown in the 

paper that these estimators can be simply incorporated into the 

control algorithm. Particular contribution of the paper is the 

simplification of the control algorithm for systems with a small 

sampling period, which shows that the control in the sliding 

mode does not explicitly depend on the equivalent control, 

which is widely used in the theory and practice of discrete time 

sliding modes, but only on the current and previous value of the 

sliding variable and on the previous control signal value. On the 

example of a positional servo system, it was demonstrated by 

simulation that the proposed simplification is fully justified for 

discrete time sliding modes with a small sampling period. The 

further research direction is to study the impact of the used 

approximations and neglections on the system stability and the 

properties of the system with the considered estimators in the 

case of the presence of unmodeled dynamics. 
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