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Abstract—In this paper, an analytical method is proposed to design Proportional-Integral (PI) and Proporional-Integral-Derivative 

(PID) controllers for two-stage industrial series cascade processes with transport delay under robustness constraints. The main 

rationale behind using series cascade control structure is that the disturbances in the inner loop are suppressed by the secondary 

controller before being transmitted to the outer loop. The presented design procedure consists of two steps: In the first step, the 

controller Cb(s) in the inner loop is designed, while in the second step the controller Ca(s) in the outer loop is obtained. The obtained 

controller is of PI or PID-type structure depending on the number of selected terms used in Maclaurin’s approximation of the transfer 

function of the high-order controller. By specifying the robustness constraints within design procedure one define values of adjustable 

parameters to achieve compromise between robustness and performance indicators. The result is efficient suppression of load 

disturbances, evaluated by the integral of the absolute error (IAE). The step reference response can be additionally reshaped by using 

Two Degree of Freedom – 2DoF control structure via suitable selection of set-point weighting factor b, 0≤b≤1, which acts on the control 

signal through displaced proportional action of the controller. The proposed design method is analyzed with simulations on wide class 

of typical representatives of industrial processes including stable, integral and unstable processes with time delay. A comparison with 

recent studies shows the effectiveness of the proposed tuning method for industrial cascade processes. 

Keywords- robustness; maximum sensitivity function; analytical controller design; cascade control; 

I.  INTRODUCTION 

Cascade control structures are used in various industries 
with the aim of improving the efficiency of load disturbance 
rejection, reducing the sensitivity of the system to variations in 
process parameters, and generally improving the dynamic 
indicators of closed-loop system behavior [1]. Of particular 
importance is its application in the process industry, where the 
advantages of cascade control in the elimination of 
disturbances related to the control signal and when the control 
object (secondary process) has a nonlinear behavior are 
particularly emphasized [2]. Disturbance rejection in the 
process industry is of greater interest than set-point tracking in 
many process control applications. The reason for this is that 
set-point changes only occur when the production rate is 
changed. 

In the standard two-stage series cascade control, there are 
two feedback loops with two controllers in each [3]. The 
controller in the inner loop is usually called the secondary 
controller (slave controller), while the primary controller 

(master controller) is located in the outer loop [4]. Some 
applications of series cascade control are: steam-fed water 
heaters [5], natural draft furnaces [6,7], polymerization 
reactors [8], etc. The basic concept of this configuration is that 
the disturbances in the inner control loop are suppressed by 
the secondary controller before being passed to the outer 
control loop. The benefits of using series control 
configurations are particularly emphasized under the following 
circumstances: when the inner control loop is faster than the 
outer control loop, when the inner control loop has influence 
on the outer control loop, and when the disturbances in the 
inner control loop are less severe than the disturbances in the 
outer control loop. As for the disadvantages of cascade 
control, industry consultants point to the additional cost of the 
extra sensor and controller that adds complexity to the control 
system. As a result, double tuning of the controllers is 
required. If the inner loop is too aggressive and the two 
processes operate on narrow time scales, two controllers can 
compete with each other, which can lead to instability of the 
control loop [9]. Performance improvement by applying 
cascade control over a conventional control loop is achieved 
when both controllers are adequately tuned. 
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Most of the developed design techniques are related to 
conventional proportional-integral-differential (PID) 
controllers. Research studies have shown that about 94% of 
feedbacks in industry have a PI/PID structure [10], while in 
petroleum, chemical, pulp and paper industries, their 
percentage is over 97% [11,12]. Most of the developed design 
techniques refer to conventional proportional-integral-
differential (PID) type controllers. Research studies have 
shown that about 94% of feedback in the industry have a 
PI/PID structure [10], while their percentage in the petroleum, 
chemical and pulp and paper industries is over 97% [11,12]. In 
a recent study [13], PID control was ranked first in terms of 
importance for industry, with the conclusion that efficiency and 
ease of implementation give PID algorithms preference over 
advanced control algorithms (predictive model control, 
intelligent nonlinear control, adaptive control, etc.). In this 
sense, different techniques have been developed for the design 
of the parameters of the primary and secondary controller, 
which can be generally divided into analytical and numerical 
(optimization) methods. Although numerical algorithms are 
more efficient in adjusting the parameters of controllers [14-
19], they are computationally expensive compared to analytical 
rules and often cannot be easily adjusted by field engineers 
[20-21]. Therefore, various analytical design methods are 
available in the literature based on: configuration of the internal 
model control structure (Internal Model Control - IMC rules 
and their modifications) [22-25], the specification of the 
desired form of complementary sensitivity function of the 
closed-loop system [26-28], the application of the pole 
spectrum techniques [29,30], the use of D-decomposition 
techniques [31,32] and many other principles. Analogously, 
methodologies for adjusting the parameters of PI/PID 
controllers for the purpose of cascade regulation of industrial 
processes have been specifically developed. 

Efficient analytical tuning methods for industrial cascade 
processes based on the IMC principle, among others, have 
been the subject of numerous studies [33-42], including the 
derivation of tuning rules considering robustness constraints in 
some of these researches. In [33, 34], both primary and 
secondary control loops controlled by 2DOF controllers are 
designed according to the IMC paradigm and tuning rules are 
presented. In [35], an automatic tuning method for a cascade 
control system is proposed, which allows simultaneous tuning 
of two PID controllers after estimating the process parameters 
by evaluating a set-point step response. Similarly, a single 
closed-loop step test is performed in [36] to identify the 
required process information using B-spline series 
representation for the step responses. The desired robustness 
levels guide the selection of IMC tuning parameters and allow 
full automation of controller tuning. In [37], an IMC-based 
method for tuning PID controllers while maintaining gain and 
phase margin specifications for cascade control systems is 
proposed. 

The design technique using the IMC paradigm in [38] 
leads to a complete set of tuning parameters for the inner (2-
DoF PI) controller and the outer (2-DoF PID) controller. The 
robustness of the cascade control system was analyzed in [39] 
using the structured singular value concept. In [40, 41], 
modified cascade structures are proposed to achieve 
improvements with both the IMC-based controllers and the 
process disturbances. Most of the aforementioned analytical 
design methods are related to a specific, narrower class of 

processes, while the method of direct synthesis of frequency-
domain controllers for a broader class of processes has been 
recently proposed in [43,44]. The processes under 
considerations in this study include stable, integral and 
unstable time-delayed industrial processes. In [43], a 
proportional-integral controller is used in both the inner and 
outer control loops. The secondary controller is designed 
based on the desired transfer function of the closed loop 
system using the direct synthesis approach to achieve efficient 
suppression of load disturbances. A primary controller is then 
designed to provide good set-point tracking by considering the 
secondary process and the secondary controller as part of the 
primary process. The prefilter is added to remove unnecessary 
overshoot within the set-point response. A similar approach, 
defined as a combination of the direct synthesis approach and 
the pole placement method, was elaborated in [44] to achieve 
improved control performance. It should be noted that there 
are special control structures developed exclusively for 
systems with dominant transport delay [45], which are not the 
subject of discussion in the present work. 

The subject of this work is the design of PI and PID 
controllers for industrial cascade processes with time delay, 
taking into account robustness requirements. The parameters 
of PI/PID controllers in the inner and outer loops of a series 
cascade control system are determined to achieve an adequate 
compromise between performance and robustness measures 
[46]. It is assumed that the pair of process models is known and 
described by the transfer function. The design procedure of 
PI/PID controllers, in particular for the inner and outer loop, is 
based on the determination of the high-order controller C(s) 
[47], which is then approximated by low-order PI or PID 
controllers. In this paper, the controller C(s) is defined for 
general process transfer function Gp(s) given in rational form 
with time delay for specified complementary sensitivity 
transfer function Td(s) (where the subscript d denotes the 
"desired" form). The obtained results are tested by a series of 
numerical simulations with corresponding analysis of 
robustness and performance indicators for a wide class of 
industrial processes: stable, integral and unstable processes 
with time delay. 

The merits of the present work are listed below:  

i. The presented methodology is simple and straightforward, 
it is characterized by the flexibility to shape load 
disturbance and reference responses accordingly. It requires 
only two tuning parameters (one for each controller, in the 
primary and secondary control loops). The values of these 
parameters are adjusted to meet desired trade-off between 
performance and robustness. Moreover, the operator may 
have at its disposal the calculated value of the adjustable 
parameters under previously specified robustness 
constraint.  

ii. The presented approach is applicable to a wide class of 
industrial processes including stable, integral and unstable 
processes with time delay. It does not require any reduction 
in the order of the process model and no loss of process 
dynamics which affects the quality of regulation. On the 
other side, for the derivation of tuning formulas in explicit 
form, it is desirable to have low-order models. 

iii. The use of the proposed methodology to industrial series 
cascade processes leads to an improvement in the robust 
performance of the closed-loop system. 
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iv. The proposed methodology provides an efficient way for 
fine-tuning of the standard series cascade control systems, 
and the same methodology can be applied to multistage 
cascade control of industrial processes without loss of 
generality. 

The rest of the paper is structured as follows. The general 
approach for designing controllers based on the specified 
complementary sensitivity function is given in Section 2. Then, 
in the remainder of the section, the presented methodology is 
demonstrated specifically for the series cascade control 
structure. In Section 3, the comparative simulation analysis is 
performed on the test batch consisting of ten pairs of 
representatives of the dynamical characteristics of industrial 
processes. Concluding remarks are given in the Section 4. 

II. ANALYTICAL DESIGN METHODOLOGY FOR PI/PID 

CONTROLLERS FOR CASCADE INDUSTRIAL PROCESSES WITH 

TIME DELAY UNDER ROBUSTNESS CONSTRAINTS 

A. The fundamentals of the general approach for controller 

design 

The simplified control structure with controller C(s) is 
presented in Fig. 1. The following notation is used: r – 
reference signal, d – load disturbance at the input of process, n 
– measurement noise, y – output of the system, Gff(s) is the 
prefilter, and Gp(s) is the transfer function of the controlled 
process. 
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+
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u
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Figure 1.  The simplified control structure 

Among others, the approach of designing conventional 
controllers based on selected complementary sensitivity 
functions is one of the most common, characterized by its 
simplicity and flexibility in setting the desired trade-off 
between performance and robustness indicators. Various forms 
of complementary sensitivity functions have been considered in 
the literature [27-29, 33-38, 47]. In choosing the desired form 
of the transfer function two competing requirements must be 
met. First, the number of tunable parameters should be as small 
as possible while it is desirable to tune different closed-loop 
characteristics independently [21]. 

The complementary sensitivity function of the control 
system in Fig. 1 is given by the relation:  

 ( )
( ) ,

1 ( )

L s
T s

L s
=

+
 (1) 

where L(s)=C(s)Gp(s) is the loop transfer function. For the 
design of the PI/PID controller, we choose the desired 
complementary sensitivity function Td as follows: 
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where 2 ,p n≥  ,p n N∈  and adjustable parameters 0,
k

λ >  

1, ,k p=  ,
j

Rη ∈  1, .j n=  The parameters 
j

η  and 
k

λ  are 

determined based on the desired behavior of the closed-loop 
system. Note that polynomial P(s) is taken in wide scientific 
and professional literature in the form ( ) ( 1) .pP s sλ= +   

The controller C(s) is defined from relations (2), for the 
process transfer function Gp(s) with time delay τ, in order to 
achieve more efficient load disturbance suppression d, as well 
as, attenuation of measurement noise n [48]. From expressions 
(1) and (2), the transfer function of controller C(s) is defined 
as: 

 d

p d p

( )1 1 ( )
( ) ,

( ) 1 ( ) ( ) ( )

s

T s N s e
C s

G s T s G s F s

τ−

= =
−

 (3) 

where ( ) ( ) ( ).s

F s P s e N s
τ−= −  In the general case, the 

parameters 
1
,

n
η η  are determined such that the poles of the 

process Gp(s) for the nominal operating mode are eliminated 
with zeros of the function F(s) [27, 47]. In this way, if the 
denominator of the complementary sensitivity function is 
chosen as follows: ( ) ( 1) ,pP s sλ= + (or in a similar manner), 

the parameters 
1
,

n
η η  are uniquely defined as a function of the 

single adjustable parameter ,λ  that should be selected to meet 
the desired design requirements. 

For the purpose of obtaining low-order controllers from (3), 
the common approach is to use Maclaurin approximation 
[33,34]. In this way, the parameters of the PI controller defined 
by 

 i

PI
( )

k
C s k

s
= +  (4) 

are obtained by expanding the function ( ) ( )f s sC s=  into 
Maclaurin series in s as in [15]. By using only the first two 
terms, the parameters of the approximation, i.e. 
( ) (0) (0) ,f s f f s′≈ + the integral and proportional gains are, 

respectively:  

 i
(0),

(0)

k f

k f

=
′=

 (5) 

By following the described procedure, the parameters of the 
PID controller given by 
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d i
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f
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s T s
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+
 (6) 

are obtained by the Maclaurin approximation of the function 

f
( ) ( 1) ( ).f s s T s C s= + By preserving only three terms in the 

expansion, i.e. 2

( ) (0) (0) 0.5 (0)f s f f s f s′ ′′≈ + + , parameters 
of the PID controllers are determined by relations: 
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The filter time constant can be defined as 
f

/ ,T N= λ  where 
the value of parameter N is chosen taking into account the 
sensitivity to measurement noise. One possibility is to consider 
the maximum sensitivity to measurement noise 

n n
max (i )M S

ω
ω=  [18], where 

n
( )S s  denotes sensitivity 

function with respect to the measurement noise: 

 PID

n

PID p

( )
( )

1 ( ) ( )

C s
S s

C s G s
=

+
 (8) 

In general, the parameter N can be chosen such that a change 
in the control signal caused by the measurement noise is 
acceptable [49]. 

It should be particularly noted that the previously 
described approximations of the complex (high-order) 
controller are suitable for processes where the transport (time) 
delay is not dominant with respect to the basic dynamics of the 
regulated process. Otherwise, controllers of more complex 
structure and appropriate control structures should be used to 
compensate for the time delays included in the characteristic 
equation of the control system to achieve the desired 
compromise between performance and robustness [37]. 

Hence, the parameters of the PI/PID controllers are 
expressed as a function of the free parameter ,λ on the basis of 
which the desired indicators of robustness or closed-loop 
feedback system behavior can be achieved under previously 
defined conditions for processes where the transport delay is 
not dominant. The trade-off between the suppression of load 
disturbances and robustness can be expressed by the 
quantitative measure 

s
max (i ) ,M S

ω
ω= where  

 
x p

1
( )

1 ( ) ( )
S s

C s G s
=

+
 (9) 

is the sensitivity function for x=PI or x=PID. Following this 
procedure, the time constant λ should meet the condition: 

 
p s

,

max 1/ (1 (i ) (i )) ,
x

C G M
ω λ

ω ω+ =  (10) 

so for stable control processes Ms should be within acceptable 
limits 

s
1,2 2M≤ ≤ [42]. The evaluation of the robustness of 

the system to different types of uncertainties in the process 
such as modeling errors, can be estimated by the maximum 
value of complementary sensitivity function, i.e. 

p
max (i ) ,M T

ω
ω= where T(s)=Cx(s)Gp(s)/(1+Cx(s)Gp(s))), 

where x=PI or x=PID. 

The efficiency of load disturbance rejection is evaluated on 
tha basis of Integral of Absolute Error ‒ IAE, which is defined 
as follows:  

 
d d

0

IAE ( ) ,e t dt

∞

=   (11) 

where 1

d p
( ) { ( ) / ( (1 ( ))}e t G s s L s

−= +L  is the response of the 

system to the unit step disturbance [39]. 

B. The proposed design approach for series cascade control 

structure 

The idea behind using series cascade control structure is to 
supress disturbances before they affect the output signal 
(controlled variable This is not possible in the conventional 
single loop configuration, where disturbance suppression 
occurs when the output of the system deviates from the 
desired set-point. The effectiveness of cascade control is 
particularly evident when larger disturbances enter the 
secondary loop and the dynamics of the inner secondary loop 
are faster than the dynamics of the outer loop. 

The structural block diagram of the series cascade control 
is shown in Fig. 2. The two control loops are nested, with the 
secondary (inner) loop inside the primary (outer) loop. The 
primary and secondary processes are described by the transfer 
functions Ga(s) and Gb(s), respectively. The corresponding 
controllers are denoted by Ca(s) – primary (master) and Cb(s) – 
secondary (slave) controller. The outputs of the controllers, i.e. 
the control signals, are denoted by ua and ub, respectively. The 
output of the primary control loop is denoted by y1, while the 
output of the secondary control loop is denoted by y2. The 
disturbances d1 and d2 are modeled to act on the input of the 
primary and secondary process models. The reference signal 
(set-point) of the primary control loop is represented by r1, 
while the output signal of the primary controller y2 serves as 
the set-point for the secondary controller. The measurement 
noise of the primary control loop is denoted by n1, that of the 
secondary control loop by n2. 
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Figure 2.  The series cascade control structure 

The analytical approach described previously is used to 
design both PI/PID controllers in the internal and external 
control loops. The standard procedure for designing the 
primary controller Ca(s) and the secondary controller Cb(s) in 
the cascade control structure from Fig. 2, consists of two steps.  

Step 1. First, the controller Cb(s) in inner control loop is 
designed (if possible) for the process Gb(s) [1]. The desired 
form of the complementary sensitivity function Tdb(s) is 
specified and the controller Cxb(s) is designed (x=PI or x=PID 
at the designer’s choice) under the desired robustness 
constraint Msb or/and Mpb (or some other specifications for 
internal control loop). 

  
sb

b

b b
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b b

1
max ,

1 ( ) ( )

( ) ( )
max ,

1 ( ) ( )

b

M
C s G s

C s G s
M
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ω

ω

=
+

=
+

        (12) 

Step 2. In the second step, the controller Ca(s) in the outer 
control loop is designed for the equivalent process described 
by the transfer function  

  a b b

ae

b b

( ) ( ) ( )
( )

1 ( ) ( )

G s G s C s
G s

C s G s
=

+
          (13) 

In this step, the designer assumes the form of the desired 
complementary sensitivity function Tda(s) for the outer control 
loop. As a result, the controller Cxa(s) (x=PI or x=PID) is 
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designed for specified robustness sensitivities Msa or/and Mpa, 
defined by relations: 

 
sa

a ae

a ae

pa

a ae

1
max ,

1 ( ) ( )

( ) ( )
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1 ( ) ( )

M
C s G s
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=
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Remark 1. The robustness constraints defined in (12) and (14) 
are used to design controllers in inner and outer loops, 
respectively. Due to the loop interaction in a cascade structure, 
the concept of structured singular values can be used for 
robustness analysis, as described in [39]. Therefore, the 
maximum of the sensitivity function of the overall system 
from Fig. 2 is defined as in [39]: 
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b b a a b b
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 (15) 

Note that both the ua and ub control signals can be 
implemented independently such that the proportional action 
for the PI controller and the proportional and differential 
actions for the PID controller are shifted to the feedback path, 
while only the integral action of the ki/s controller remains in 
the forward path of the reference signal, to which partially 
proportional action bk, 0≤b≤1 is added [49, 50]. In this way, 
this control structure prevents large spikes in the control signal 
due to changes in the reference signal. In addition, set-point 
weighting factor may be used to increase the response speed. It 
should also be noted that the described controller design 
procedure can be directly applied to multi-stage series cascade 
regulation of industrial processes without loss of generality. 

III. COMPARATIVE ANALYSIS AND SIMULATIONS 

Parameters of obtained Cxa/Cxb controllers (x=PI ili x=PID) 
are given in Table I for ten pairs of representatives of 
dynamical characteristics of industrial processes: 
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In order to reduce the peak in response y1(t) to the step 
reference signal r1(t), the controller Ca(s) is realized in all 
simulations so that only the integral action kia/s acts on the 
reference signal in the forward path, to which a partially 
proportional gain bka, 0≤b≤1, is added, while the other actions 

of the controller Ca(s) are shifted to the feedback path. The 
controller Cb(s) is placed in the forward path in all simulations. 
From the point of view of of practical realization it should be 
noted that it is necessary to prevent integral action from 
winding up, for which there are well-known (anti-windup) 
structures in practice, whether it is a PI or PID controller [50]. 
The parameters of the designed primary and secondary 
controller are listed in Table I, including the obtained 
quantitative performance and robustness measures [51]. 

The presented controller design method is explained in 
more details for the process Gp7(s). The transfer function of 

the inner loop process model is 
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then determined from the condition of cancellation of the 
process pole s=1/T2 with a zero of the function 
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Msb and/or Mpb. In the second step, we analyze the equivalent 
process Gae=Ga7(s)Gb7(s)Cb(s)/(1+Cb(s)Gb7(s)) described with 
Eq. (13), where Cb(s) is previously obtained PID controller. 
The complementary sensitivity function for the outer control 

loop is chosen in the form 
1 2( )

a
da 2

a fa

( 1)
( ) .

( 1) ( 1)

L L s
s e

T s
s T s

η
λ

− ++
=

+ +
For 

simplicity, let us adopt 
fa b

.T η≈ Thus, the next step is to 

perform cancellation of the pole s=0 of the process 
a7
( )G s  

with zero of the auxiliary function 
1 2( )2

a a fb a( ) ( 1) ( 1) ( 1) .
L L s

F s s T s s eλ η − += + + − +  To achieve this, 

the parameter 
a a fa 1 2

2 T L Lη λ= + + +  is obtained from the 

condition ( )a

0

( ) 0.
s

d
F s

dt =

=  The resulting high-order 

controller 
a da da ae
( ) ( ) / ((1 ( ) ( ))C s T s T s G s= −  depends only on 

an adjustable outer loop parameter 
a
.λ  By the Maclaurin’s 

approximation mentioned above, a PID controller is obtained 
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as a function of the parameter 
a
.λ  The specification of Msa=2 

leads to 
a

2.89λ ≈  and parameters of PID controller given in 

Table I. Here, the set-point weighting factor is chosen to be 
b=0.3, which leads to an additional shaping of the reference 
response. The analogous procedure is repeated for all 
processes considered. 

The results of the simulation analysis of the proposed 
design methodology of controllers for series cascade processes 
including the comparison with two techniques recently 
elaborated in [43,44], are presented in Fig. 3 - Fig. 13. The 
comparison of responses to reference and load disturbances 
shown in Fig. 3 for process G1(s) in the cases where the 
designed secondary controllers are of PID-type, while the 
primary controllers have the structure PI or PID. As a result, 
IAEd2 is slightly smaller (slightly more efficient suppression of 
load disturbance d2), while rejection of load disturbance d1 is 
more efficient with PIDa compared to PIa controller, which is 
to be expected. Under the same constraints to modeling 
uncertainties Mpa=1, the PIDa and PIDb controllers are 
designed for process G2(s). Fig. 4 presents control signals ua(t) 
and ub(t) for process G1(s). Evidently, speeding up the 
reference response leads to more excessive control activity. 
Generally, preventing the integral action is done through 
known anti-windup structures used in practice, whether it is a 
PI or PID controller [50,52]. From Fig. 5 can be concluded that 
the system efficiently suppresses external disturbances 
compared to the controllers designed in [44]. Fig. 6 and Fig. 7 
show the responses to reference and load disturbances for 
processes G3(s) and G4(s) for scenarios with different 
sensitivity constraints. It is evident that for smaller values of 
robustness constraints one obtains poorer load disturbance 
rejection. The use of PIDb instead of PIb controllers in the 
inner loop is justified for smaller values of IAEd1 and IAEd2, as 

illustrated for process G5(s) in Fig. 8. Here, the controllers in 
the inner loop (PIDb and PIb) are designed under the 
constraint Msb=2, and then the controllers PIDa in the outer 
loop are obtained for the specified Msa=3.5. Fig. 9. Shows the 
system responses to the reference signal and disturbance for a 
fixed value Msa = 2 and two values to constrain the robustness 
level of the inner loop (Msb=2 and Msb=3) for process G6(s). 
As expected, it results that for lower values of Msb, a worse 
suppression of load disturbances is achieved, but the system is 
then less sensitive to modeling errors of the considered 
process. The same conclusion can be derived for process G7(s) 
for which the results are shown in Fig. 10. For process G8(s), 
larger values of IAEd1 and IAEd2 are obtained for the same 
constraint Msa, but significantly lower values for Msb and Mpb 
compared to the controller from [43], as can be seen in Fig. 
11. The comparison of the performance/robustness of the 
system with the proposed PID controller in the inner and outer 
loops with [44] for processes G9(s) and G10(s) is shown in Fig. 
12 and Fig. 13. Under the smaller constraint on robustness 
Msa=2.46 (for proposed controller) compared to Msa=2.54 
(Ref. [44]), more efficient disturbance suppression is achieved 
for process G9(s) with the proposed PIDa, PIDb controllers 
(IAEd1=6.32, IAEd2=0.02) compared to the PID1, PID2 
controllers from [44] (IAEd1=9.57, IAEd2=0.18). The same 
conclusion is drawn for the process G10(s) where the 
controllers are designed under the constraint Msa=3.05. For all 
the considered processes, the reaction speed of the system is 
simply adjusted (increased) by a suitable choice of set-point 
weighting parameter b. 

 
 
 
 

 

TABLE I.  PARAMETERS OF CXA/CXB, (X=PI OR X=PID) FOR PROCESSES GAJ(S)/GBJ, J=1,2,3...,10 AND FOR SPECIFIED VALUES OF MSA AND MSB AS WELL AS 

PARAMETERS OF CONTROLLERS FROM RECENT STUDIES 

Process  

pairs 

ka kia 

kda 

Tfa 

b Msa Mpa kb kib 

kdb Tfb Msb Mpb IAEd1 IAEd2 Ms 

G1(s) 0.5524 
0.3788 

0.1061 
0.0763 

0.4884 
- 

0.1025 
- 

0.3 
0.8 

2.0 
1.8 

1.10 
1.00 

3.3928 
3.3928 

0.8250 
0.8250 

3.7773 
3.7773 

0.0521 
0.0521 

2.0 
2.0 

1.34 
1.34 

9.47 
13.1 

2.31 
2.69 

2.12 
1.76 

G2(s) 
Ref. [44] 

0.9598 
0.2449 

0.4681 
0.1870 

0.4712 
0.0170 

0.0300 
0 

0.35 
1.00 

1.68 
1.34 

1.00 
1.00 

1.1397 
0.5920 

8.5496 
5.1380 

0.0346 
0.0090 

0.0027 
0 

2.0 
1.48 

1.09 
1.00 

2.14 
5.35 

0.14 
0.31 

1.99 
1.48 

G3(s) 0.5594 0.0742 0.6919 1.7550 0.41 2.0 1.43 4.1129 1.8308 2.4420 0.0278 2.0 1.38 13.49 2.06 2.40 
0.4547 0.0517 0.5835 1.7966 0.45 1.8 1.41 3.5430 1.5174 2.0988 0.0306 1.8 1.24 19.36 2.95 1.96 

 
G4(s) 

 

1.4678 0.3127 - - 0 2.0 1.21 1.5962 0.7599 0.2921 0.0350 2.0 1.46 3.26 1.15 1.99 
1.3645 0.2117 - - 0.4 1.8 1.07 1.5962 0.7599 0.2921 0.0350 2.0 1.46 4.72 1.19 1.98 
1.2792 0.1903 - - 0.4 1.8 1.05 1.3771 0.5617 0.2443 0.0440 1.8 1.39 5.26 1.67 1.76 

G5(s) 2.4432 
2.3298 

0.0968 
0.0809 

3.5501 
4.0372 

0.1560 
0.1765 

0.185 
0.20 

3.5 
3.5 

3.08 
3.07 

0.5698 
0.4111 

0.4275 
0.3183 

0.1731 
- 

0.0273 
- 

2.0 
2.0 

1.09 
1.17 

10.33 
12.37 

3.80 
5.46 

3.18 
2.62 

G6(s) 1.3709 
1.6680 

0.1479 
0.1962 

- 
- 

- 
- 

0 
0 

2.0 
2.0 

1.19 
1.24 

15.614 
22.079 

3.2769 
6.7223 

5.8002 
9.007 

0.0765 
0.0420 

2.0 
3.0 

1.52 
2.12 

6.93 
5.25 

0.27 
0.12 

1.97 
3.26 

G7(s) 
0.5517 0.0383 1.2332 4.3637 0.30 2.0 1.49 7.8069 1.6384 2.9001 0.0765 2.0 1.52 26.16 2.36 1.97 
0.5814 0.0439 1.1225 3.7947 0.3 2.0 1.49 8.7008 2.0666 3.3109 0.0638 2.2 1.59 22.79 1.78 2.06 

G8(s) 
Ref. [43] 

2.6181 
2.4300 

0.0551 
0.0730 

7.9475 
- 

4.1722 
- 

0.22 
0 

3.0 
3.0 

2.64 
2.50 

0.3428 
0.2800 

0.0665 
0.0700 

0.2912 
- 

0.0543 
- 

5.0 
37.6 

4.10 
38.1 

18.15 
15.42 

21.1 
18.78 

7.02 
6.47 

G9(s) 
Ref. [44] 

3.6822 
3.0000 

0.1581 
0.1050 

2.8892 
0.1300 

0.1735 
0 

0.2 
0.2 

2.46 
2.54 

2.25 
2.38 

21.9546 
10.960 

35.2929 
5.5000 

0.0588 
0.5300 

0.0168 
0 

1.81 
1.17 

1.53 
1.22 

6.32 
9.57 

0.02 
0.18 

2.02 
1.17 

G10(s) 
Ref. [44] 

0.2086 
0.2000 

0.0305 
0.0410 

0.6076 
0.7500 

0.0585 
0 

0.28 
0 

3.05 
3.05 

2.78 
2.40 

2.9959 
3.1100 

4.0580 
3.7300 

0.3078 
0.3620 

0.0141 
0 

2.0 
2.0 

1.24 
1.10 

32.8 
34.7 

2.60 
2.77 

2.19 
2.27 

 
 



  

International Journal of Electrical Engineering and Computing  

Vol. 6, No. 2 (2022) 

 

71 

 

 
Figure 3.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-0.1exp(-120s)/s and D2(s)=exp(-60s)/s for pair of 
processes G1(s) with proposed controllers PIDa,PIDb and PIa,PIDb 

 
Figure 4.  Corresponding control signal ua(t) and ub(t) of the system for pair 
of processes G1(s) with proposed controllers PIDa,PIDb and PIa,PIDb 

 
Figure 5.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-exp(-60s)/s and D2(s)=exp(-60s)/s for pair of processes 
G2(s) with proposed controllers PIDa,PIDb (blue line) and controllers 
PID1,PID2 (red line) from reference [44] under same constraints Mpa=Mp1. 

 
Figure 6.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-0.1exp(-80s)/s and D2(s)=exp(-30s)/s for pair of processes 
G3(s) with proposed controllers PIDa,PIDb for different robustness 
constraints. 

 
Figure 7.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-1exp(-80s)/s and D2(s)=exp(-40s)/s for pair of processes 
G4(s) with proposed controllers PIa,PIDb under different robustness 
constraints. 

 
Figure 8.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-0.5exp(-120s)/s and D2(s)=0.5exp(-60s)/s for pair of 
processes G5(s) with proposed controllers PIDa,PIDb and PIDa, PIb.  
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Figure 9.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-exp(-120s)/s and D2(s)=exp(-60s)/s for pair of processes 
G6(s) with proposed controllers PIa,PIDb for Msb=2  and PIa, PIDb for Msb=3.  

 
Figure 10.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-0.1exp(-120s)/s and D2(s)=exp(-60s)/s for pair of 
processes G7(s) with proposed controllers PIDa,PIDb designed for different 
robustness constraints. 

 
Figure 11.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-0.5exp(-250s)/s and D2(s)=0.5exp(-100s)/s for pair of 
processes G8(s) with proposed controllers PIDa,PIDb and controllers  PI1,PI2 

from [43] designed under same robustness constraint Msa=Ms1. 

 
Figure 12.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-exp(-120s)/s and D2(s)=50exp(-60s)/s for pair of 
processes G9(s) with proposed controllers PIDa,PIDb and controllers  
PID1,PID2 from [44] designed under same robustness constraint Msa=Ms1. 

 
Figure 13.  Responses of the system to step reference R1(s)=1/s, and step load 
disturbances D1(s)=-0.1exp(-120s)/s and D2(s)=exp(-60s)/s for pair of 
processes G10(s) with proposed controllers PIDa,PIDb and controllers  
PID1,PID2 from [44] designed under same robustness constraint Msa=Ms1. 

IV. CONCLUSIONS 

The paper presents an analytical method for determining 
the parameters of PI and PID controllers for cascaded industrial 
processes with time delay. The controllers in the inner and 
outer loops are designed considering robustness constraints by 
specifying the maximum sensitivity or/and the complementary 
sensitivity function. Simulation results show that the proposed 
technique is robust and provides satisfactory improvements in 
system performance indicators compared to recently published 
methods for tuning the parameters of conventional controllers 
for industrial cascade processes with time delay. Alternatively, 
the operator can also modify the desired trade-off between 
robustness and performance measures by selecting the 
adjustable parameters. This shows that the proposed method is 
characterized by flexibility and provides an efficient way to 
fine-tune standard cascade control systems, and that the same 
methodology can be applied, to multi-stage cascade control of 
industrial processes, without loss the generality. 
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