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Abstract—Monitoring and supervision of overhead power lines have become essential actions in Electrical Power Systems since the 

introduction of the Smart Grid concept. In order to monitor overhead power lines, simple non-invasive devices are mounted on support 

poles, which detect line abnormalities and faults by measuring magnetic field originating from power line conductors. Measured signals 

are also used to determine various electrical and non-electrical line parameters. In this paper a new approximate model for magnetic 

flux density vector components of the overhead power lines suitable for real-time conductor sag estimation is presented. In the proposed 

model, catenary-shaped power line conductors are approximated with tilted straight line conductors, and the approximate model is 

calibrated by tuning model coefficients to match flux density vector components as in the case of real catenary-shaped conductors. The 

accuracy of the proposed model is verified by measurements on three-phase overhead power line model scaled to laboratory conditions. 

As a conclusion, an adaptive method for possible practical implementation based on the approximate model is considered. 

Keywords - Fault Passage Indicator; Magnetic Flux Density; Overhead Power Line; Sag;  

I. INTRODUCTION  

The key factor for proper and safe operation of Electrical 
Power System (EPS) is monitoring and supervision of 
overhead power lines. In contemporary EPS, since introduction 
of Smart Grid concept, it is common to use non-contact devices 
which measure magnetic flux density components in the 
vicinity of power line conductors [1]. These devices are used 
for monitoring line status during normal operation and 
acquiring information about abnormal regimes, like faults [2]. 
Beside their main function, these devices could be used for 
estimation of other electrical and non-electrical parameters of 
overhead lines (OHL), like conductor sag [3]. 

Accurate information about conductor sag is necessary due 
to safety reasons related to minimum ground clearance, but the 
sag also affects line transmission capabilities by limiting line 
current capacity. Conductor sag depends both on line current 
(conductor heating because of resistive losses) and ambient 
conditions (outdoor temperature, wind, snow and ice on the 
conductors). Even though the maximum value of conductor sag 
should be already taken into account during the design phase, 
the actual value of conductor sag should also be monitored and 
accounted for. 

There are several methods for sag determination, based on 
measuring physical line parameters (distance, temperature, 

vibrations, tension) or using different measurement techniques 
and signal processing (special sensors, image processing, etc) 
[4]. In [5] a method for sag monitoring by measuring induced 
current in high resistive wire attached on transmission line 
towers was proposed. A method for conductor sag 
measurement using differential GPS was proposed in [6], but it 
is impractical due to complex algorithm for sag calculation and 
issues related to GPS sensor mounting. However, the most of 
contemporary techniques for accurate sag estimation require 
complex models and use of non-conventional sensors, which 
are sensitive to ambient conditions, and in general are 
expensive, non-convenient for mass use for transmission and 
distribution OHL. 

In this paper an approximate magnetic flux density model 
of OHL for simple and inexpensive power line sag monitoring 
method is proposed. The method is based on processing the 
signals from Fault Passage Indicators (FPI) which are widely 
used as devices for contactless fault detection in EPS. Those 
devices are mounted on suitable support poles or towers 
underneath overhead power line conductors, and by measuring 
conductor magnetic flux density they can detect the passage of 
fault current through power line conductors [2]. Since the 
information about magnetic flux density components and line 
current is already available in those devices, their software can 
be upgraded to monitor conductor sag. However, calculation of 
conductor sag from measured line currents and magnetic flux 
density is a complicated task due to complexity of 
mathematical model which correlates line geometry, currents 
and magnetic flux density. Thus, for accurate conductor sag 
calculation in inexpensive devices like FPIs, a simplified power 
line magnetic flux density model should be derived, which is 
the main subject of this paper. 
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The paper is organized as follows. Section II is related to 
modeling three-phase overhead power line based on general 
mathematical model well known from the very early studies 
[7]. Since the magnetic flux density vector of catenary-shaped 
conductor cannot be calculated in closed form, in Section III an 
approximation for magnetic field spatial distribution, valid in 
the vicinity of the conductor suspension points (the place where 
the sensor is mounted) will be proposed. In Section IV the 
proposed approximate model will be calibrated to match the 
general model by tuning model coefficients. The accuracy of 
the approximate model will be confirmed in Section V, in 
which the proposed model will be tested by set of experiments 
on a three-phase power line model scaled to laboratory 
conditions. Section VI is a conclusion, in which some remarks 
about practical implementation will be given. 

II. GENERAL MODEL FOR MAGNETIC FLUX DENSITY OF 

OVERHEAD POWER LINES 

In this Section an overview of basic equations and general 
application of Biot-Savart law for catenary-shaped overhead 
power lines will be shortly overviewed, as a basis and reference 
model for subsequent analysis. 

Biot-Savart law for magnetic flux density vector of a single 
current-carrying conductor in free space at given point is 
represented by [7]: 

 
( ) 00
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where L is overall conductor length, μ0 = 4π × 10–7 H/m is the 
magnetic permeability of free space, I is the complex 

current, dl
uur

 is differential element of length at direction of the 

current, r
r

 is the position vector from differential element dl
uur

to 

the given point, 0a
r

 is the unit vector with direction same as r
r

. 

General model for spatial distribution of real power line 
magnetic field must take into account the catenary shape of 
conductors which are suspended between supporting poles or 
towers. Fig. 1a illustrates two symmetrical spans of three-phase 
power line catenary-shaped conductors, with the same distance 
yj(0) to the reference coordinate system origin in y-axis 
direction and distance between poles marked as L. The origin 
of the reference coordinate system is at the middle pole where 

the monitoring sensor is mounted. The sag of the conductors s 
is measured at the midspan, from horizontal line that connects 
suspension points of the conductors to the lowest height of the 
conductors. Catenary or chain curve is expressed as [2]: 
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where, a is catenary parameter defined as a = L2 / (8∙s). 

For the three-phase power system, overall magnetic field 
measured at the origin is the result of all three catenary-shaped 
current-carrying conductors. Magnetic flux density vector 
components take into account different current amplitudes and 
phase angles of each phase, in conjunction with geometry of 
the conductors at the suspension points as illustrated in Fig. 1b. 
The resulting magnetic flux density vector components of 
three-phase catenary-shaped overhead power line, expressed in 
the sensor reference coordinate system, are [7]: 
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where, xj and yj are coordinates of conductor j, and I j are the 
complex phase currents, j = A, B, C. In the model, ground 
return current is neglected since its contribution to the magnetic 
field is low and not notable in the vicinity of the power 
conductors, where the magnetic sensor is placed and where 
catenary effects are only notable [7]. 

 

Figure 1.  Two symmetrical spans of three-phase power line with sensor placed on the middle pole as a coordinate system origin: a) side view, b) front view 
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III. APPROXIMATE MODEL FOR MAGNETIC FLUX DENSITY 

OF OVERHEAD POWER LINES 

Magnetic flux density vector components given by 
reference model (3)–(5) cannot be solved analytically [7], and 
only can be solved by numerical integration, which is 
unsuitable for real-time application in cheap devices for 
conductor sag estimation in EPS. For that reason, an 
approximation which will provide closed form solution of (3)–
(5) is proposed in this Section. First, a single catenary-shaped 
conductor is considered, and after that, a three-phase catenary-
shaped power line of given geometry. 

A. Approximation of single catenary-shaped conductor 

Closed form solution of the Biot-Savart law (1) can be 
found for a straight line current-carrying conductor which is in 
the same plane as the origin of the coordinate system (i.e. the 
system of conductor and the origin is coplanar), as shown in 
Fig 2. Intensity of magnetic flux density vector is [8]: 

 ( )0
2 1sin sin

4 r

µ θ θ
π

⋅
= −

⋅
I

B , (6) 

where r = y(0) is normal distance from conductor to the origin 
of coordinate system. Angles θ1 and θ2 in (6) depend on 
conductor length L, normal distance r and are indicated in 
Fig. 2, while direction of the magnetic flux density vector B is 
determined by the right-hand rule. 

In order to take into account power line conductor sag and 
to maintain closed form solution of Biot-Savart integral, 
catenary-shaped conductors will be approximated with the 
tilted straight half-lines of infinite length as shown in Fig. 3. 
This approximation is valid close to the suspension points and 
also where magnetic field sensor is placed. 

In Fig. 3 the origin of the reference coordinate system is in 
a straight line below conductor suspension point and therefore 
is coplanar with the conductor. The intensity of magnetic flux 
density vector of conductor is calculated by (6), by dividing it 
into two half-lines starting at suspension point, which create 
two segments, S1 (left) and S2 (right). Those half-lines are 
symmetrical (mirrored image of each other), and the intensity 
of magnetic flux density of segment S1 is found by one half-
line of infinite length from (6) as: 
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Figure 2.   Basic application of Biot-Savart law 

 

Figure 3.  Current-carrying conductor approximated with tilted straight line 

with θ1 = –π/2 and θ2 = α, and normal distance between 
conductor and coordinate system origin is r = y(0)∙cos(α). 
Direction of the magnetic flux density vector B tilted,S1 is 
determined by the right-hand rule and it is perpendicular to the 
plane formed by the conductor and origin. Overall magnetic 
field of both segments, which are both coplanar with the 
sensor, using symmetry, is B tilted = 2∙B tilted,S1. Magnetic flux 
density vector in (7) is calculated in a closed form, and depends 
on the angle α which is a function of the sag. 

B. Approximation of three-phase catenary-shaped power line 

For the case of three-phase overhead power line with 
geometry of support pole from Fig. 1b, similar approximation 
with straight half-line conductors can be made. In this case, due 
to pole geometry, phase conductors in left and right segments 
are not coplanar with the sensor, and each half-line must be 
considered separately, having in total 6 different segments for 
three phases. This is shown in Fig. 4, for a given pole 
geometry, where each of the half-lines with the origin forms 
one coplanar segment. Pairs of segments S1-S2 are created by 
phase A, S3-S4 by phase B, and S5-S6 by phase C. Magnetic 
flux density vector of each segment is perpendicular to the 
plane of that segment, with direction determined by right-hand 
rule and its intensity can be calculated using (6). 

The resulting magnetic flux density vector in sensor xyz 
coordinate system can be found by using principle of 
superposition. Magnetic flux density vector of each segment 
n = 1,2..6 is decomposed to the components projected in sensor 
reference coordinate system and individual components are 
added. In Fig. 5 simplified illustration of n-th segment is 
depicted, where all lengths and angles for magnetic flux 
density vector decomposition are indicated. As it can be seen 
from Fig. 5, magnetic flux density vector from n-th segment 
Bn

xyz has three components of magnetic flux density (Bn
x, Bn

y 
and Bn

z) which should be calculated. 

 

Figure 4.  Segments S1 to S6 for three-phase overhead power line 
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Figure 5.  Simplified illustration of n-th segment of overhead power line 

For n-th segment, distances xn(0) and yn(0), defined by the 
pole geometry, are input variables, while the angle α depends 
on conductor sag. From Fig. 5 normal distance between 
current-carrying conductor and origin is: 

 ( )2 20n n nr x d= + , ( ) ( )0 cosn nd y α= ⋅ . (8) 

The angles in (6) are θ1 = –π/2 and θ2 = γn and sine value of 
angle γn is given by: 
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The normal distance of current-carrying conductor from the 
origin rn, can be expressed as function of known variables by 
substituting dn from (8): 

 ( ) ( ) ( ) 22
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as well as, sine value of the angle γn, which is obtained by 
substituting (10) into (9): 
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The intensity of the magnetic flux density vector for n-th 
segment is expressed in the function of known variables by 
substituting (11) and (12) into (6) as: 
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and its projections on x, y and z-axis of the reference coordinate 
system can be found. From Fig. 5 those projections are: 
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where sine and cosine of the angles ζn and δn can be found also 
from Fig 5. Since the magnetic flux density vector (13) creates 
the same angle ζn with the xz-plane as the angle between 
normal distance rn and y-axis, sine and cosine values of angle 
ζn can be found from: 
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while the sine and cosine values of angle δn are determined by 
the projection of the normal distance rn to the xz-plane and 
negative x-axis as: 
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Lengths tn, nn and pn are calculated as: 
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and by substituting (11) and (17) into (15) and (16), sine and 
cosine values expressed as functions of known variables are: 
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The resulting magnetic flux density vector components for 
three-phase power line are obtained using principle of 
superposition by adding the components (14) from all six 
segments. Since conductors for phases A and B in Fig. 4 are 
placed on the left hand side to reference xyz system, the x-
components of segments S1-S4 for phases A and B are 
positive, while for the segments S5-S6 of phase C are negative. 
Similarly, y-components of segments S1-S4 for phases A and B 
are positive, while for the segments S5-S6 of phase C are 
negative, while, due to symmetry, resulting z-component will 
be zero: 
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 , . 0z approx =B . (24) 

In (22)–(24) current In is equal to IA for n=1,2, IB for n=3,4 and 
IC for n=5,6 since the phase currents are the same for pairs of 
segments S1-S2, S3-S4 and S5-S6. 

IV. CALIBRATION OF APPROXIMATE MODEL 

The approximate model of overhead power line (22)–(24) 
with conductor sag taken into account is solved in a closed 
analytical form instead of reference model (3)–(5). The 
approximate magnetic flux density vector components are 
functions of phase currents, geometry of the support pole, and 
the angle α in the model as the multivariate function of 
catenary sag and conductor span. This function will be 
analyzed in more detail in this Section in order to provide 
satisfying accuracy of the approximate model. 

The angle α of approximate tilted straight line conductor in 
each segment from Figs. 3 and 4 can be expressed as function: 

 ( ), ,g f s Lα = , (25) 

where f is fixed longitudinal tuning parameter given relatively 
to power line span L and real catenary sag s. The parameter f 
will be used as a tuning variable by which approximate model 
(22)–(24) should have equal outputs as the reference model 
(3)–(5). By this, approximate model will be calibrated to match 
the reference through an adequate function between the sag and 
angle α (25). 

Fig. 6 shows a straight line conductor tilted by the angle α 
and is valid for any one of six segments from Fig. 4. 

 

Figure 6.  The range of angle α, and relative longitudinal tuning parameter f 

For given sag the angle α could range from minimum value 
αmin (for the line that connects suspension point and point with 
maximum sag), to maximal value αmax (for tangent line of 
catenary in suspension point). By taking into account catenary-
shaped curve (2), the slope of tilted straight line conductor 
from Fig. 6 can be expressed as: 
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with the parameter f as relative length of the span and 
a = L2 / (8∙s). Parameter f determines the intersection point 
M(f∙L, y(f∙L)) of the catenary-shaped and tilted straight line 
conductor, and it will be chosen in order to match the outputs 
of the approximate and reference models. Using (26), a relation 

between angle α and sag s (25) can be expressed in form: 
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The best value of tuning parameter f will be determined by 
comparing magnetic flux densities calculated from 
approximated model (22)–(23) with values from numerically 
solved reference model (3)–(4). For calibration purposes tuning 
parameter f is varied in range (0, 0.5], where starting value 
corresponds to the tangent line of catenary in suspension point 
(or to the angle αmax in Fig. 6), while end value 0.5 corresponds 
to the tilted line that connects suspension point and the point 
with maximum sag (or to the angle αmin in Fig. 6). 

Percentage errors of the RMS values in x and y components 
of approximate model are calculated for the range of values of 
longitudinal parameter f and conductor sag s as: 
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where Bx,approx. and By,approx. are RMS values of magnetic flux 
density components of approximate model (22)–(23), while Bx 
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and By are RMS values of magnetic flux density components of 
general reference model (3)–(4). Standard deviations of 
approximate magnetic flux density components are calculated 
for each pair of longitudinal parameter f and conductor sag s by 
equations: 
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i i
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
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where N is the number of points in which the calculation was 
performed. 

Calibration is performed by simulating standard 20 kV 
overhead power line from [9] with geometry of the support 
pole illustrated on Fig. 1b. In order to validate the model for 
large ranges of conductor sags, span length in simulations is set 
to L = 100 m, while the sag s is in range from 0 (for the straight 
line conductor) to 4 m. Calculated errors (28) for x and y 
magnetic flux density vector components are shown in Fig. 7 
and Fig. 8, while standard deviations (29) are shown in Fig. 9 
and Fig. 10. 

From Fig. 7 it is clear that x component has significant error 
for large sag values, which cannot be compensated by tuning 
parameter f. On the other hand, from Fig. 8 it is clear that the 
error in y component ranges from – 2.95% to + 4% for whole 
sag range and highly depends on tuning parameter f. This 
means that the proposed approximation is not accurate for 
modeling x component, but it is very accurate in modeling y 
component of magnetic flux density. This can be also 
confirmed by observing standard deviations in Fig. 9 and 
Fig. 10, because it is clear that error in the y component 
significantly depends on tuning parameter f, while it has low 
influence on the x component. 

The proposed approximation has satisfying accuracy for 
modeling y component of magnetic flux density. The best value 
for tuning parameter is found by observing Fig. 8 and Fig. 10 
as f = 0.29, for which error in y component is between – 0.75% 
and + 0.02% for the whole sag range. As a conclusion, the 
possible method for conductor sag estimation can be based 
only on y component of magnetic flux density of the proposed 
approximation, which is highly accurate and preserves 
information about real conductor sag. 

As an illustration of the accuracy of the proposed model, 
instantaneous values of magnetic flux density vector 
components for real 20 kV overhead power line [9] are 
simulated for reference and approximate model, and are 
compared in Fig. 11. The sag of catenary is set to s = 1 m, span 
length is L = 100 m, while sag to span ratio is equal to 
s / L = 1 / 100 = 0.01. From Fig. 11b it can be concluded that the 
y component has very high level of accuracy compared to 
reference model, with error less than 1%. 

However, since x and y components of magnetic flux model 
(22)–(23) are completely decoupled, some other procedure for 
calibrating the x component should be considered in order to 
obtain better accuracy, if needed. By this, different longitudinal 
tuning parameters f for x and y component can be selected. 

 

Figure 7.  Error of approximate magnetic flux density x component 
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Figure 8.  Error of approximate magnetic flux density y component 

 

Figure 9.  Standard deviation of Bx,approx. component 

 

Figure 10.  Standard deviation of By,approx. component 
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Figure 11.  Magnetic flux density of approximate model (blue-solid) and 

reference model (red-dotted), for s=1 m, a) x and b) y component 

V. EXPERIMENTAL VERIFICATION 

Experimental verification of the accuracy of the proposed 
approximate magnetic flux density model is conducted on 
overhead power line model scaled for laboratory conditions, 
which is thoroughly described in [10]. The scaled power line 
model corresponds to the real 20 kV distribution overhead 
power line with geometry from Fig. 1. Power line model 
dimensions and currents are scaled based on principle of the 
magnetic flux density invariance. By this, the flux density of 
the scaled model is considered the same as for the real power 
line. Scaled model consists of two spans of the power line 
conductors, two angle poles with conductor tension regulation 
(Fig. 12) and one middle support pole with mounted magnetic 
flux density sensor and current measuring transformers 
(CMTs), for each phase conductor (Fig. 13a). 

The magnetic flux density y component is measured by 
magnetic sensor (MS), while phase currents are measured by 
three single phase instrument CMTs, and the signals are 
processed through analog amplifying and filtering circuit [11]. 
Amplified and filtered signals are sampled with the Humusoft 
MF634 acquisition board, with sampling frequency of 2 kHz, 
and sampled signals are further digitally processed, as shown in 
Fig. 14. 

In the experimental verification on the scaled laboratory 
model conductor sag is varied by changing the tension of the 
conductors and it is manually measured by a ruler placed at the 
middle of each span (Fig. 13b). The sag for the scaled model 
was in the range from smin,scaled = 0.03 m to the smax,scaled = 

0.16 m on the scaled span length Lscaled = 4 m. The scaled sag 
range corresponds to the real catenary in range from 
smin,real = 0.75 m to smin,real = 4 m for the span length Lreal = 

100 m. Therefore, the sag to span ratio is identical for the 
scaled and real overhead power line, and ranges from smin / L = 
0.0075, to the smax / L = 0.04. 

 

Figure 12.  Scaled angle pole with tension regulation 

 

Figure 13.  a) Support pole with MS and CMTs, b) Ruler for sag measurement  

 

Figure 14.  Data acquisition and processing  

In order to verify the accuracy of the proposed model, 
measured instantaneous value of magnetic flux density y 
component is compared with value calculated from model (23) 
using measured sag and measured currents, as shown in Fig. 
14. The results are shown in Fig. 15 and Fig. 16. 

Fig. 15 shows magnetic flux density y component measured 
by MS and approximate magnetic flux density component 
calculated by employing model (23) using measured phase 
currents for s / L = 0.0075. From Fig. 15 almost complete match 
between approximate and measured magnetic flux density 
component is confirmed, as it is expected for low values of sag. 
In Fig. 16, the same signals are shown for very large sag to 
span ratio s / L = 0.025. Difference between approximate and 
measured y component signals is less than 2%, which confirms 
accuracy of the proposed model. 
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Figure 15.  Magnetic flux density y component of approximate model (blue-

solid) and measured (red-dotted) (sscaled = 0.03 m, sreal = 0.75 m, s / L = 0.0075) 

 

Figure 16.  Magnetic flux density y component of approximate model (blue-

solid) and measured (red-dotted) (sscaled = 0.1 m, sreal = 2.5 m, s / L = 0.025) 

VI. CONCLUSION AND FUTURE WORK 

In this paper an approximate magnetic flux density model 
of three-phase catenary-shaped overhead power line is 
proposed. The main property of the model is that the Biot-
Savart line integral is solved in closed form by approximating 
catenary-shaped conductors with tilted straight half-lines. By 
proper calibration of the model, information about conductor 
sag is preserved, and the model is therefore applicable for 
power sag real-time line monitoring. The accuracy of the 
model is confirmed by computer simulations and experiments 
on the line model scaled to laboratory conditions. The proposed 
approach is applicable for arbitrary geometry of support pole, 
and both symmetrical and non-symmetrical operation of three-
phase systems. Also, it can be expanded for modeling 

conductor sag in non-symmetrical line spans by using 
additional magnetic field sensors. 

In further work, the proposed model of magnetic flux 
density will be used as a basis for real-time sag estimation by 
combining it with appropriate adaptive method (like Model 
Reference Adaptive System – MRAS) which will be added in 
Fig. 14 as a feedback using estimated sag in closed loop. By 
this, the model could be implemented as a software upgrade for 
online sag estimation in simple devices for power line 
monitoring, which already acquire information about magnetic 
field and phase currents for fault detection. 
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